

Zonnon Language Report

Jürg Gutknecht and Eugene Zueff

Editors: Brian Kirk and David Lightfoot

October 2004

Zonnon Language Report: Draft v02 r02 Printed on 2004-11-01

Abstract
Zonnon is a general-purpose programming language in the Pascal, Modula-2 and Oberon family. It
retains an emphasis on simplicity, clear syntax and separation of concerns whilst focusing on
concurrency and ease of composition and expression. Unification of abstractions is at the heart of its
design and this is reflected in its conceptual model based on modules, objects, definitions and
implementations. Zonnon offers a new computing model based on active objects with their interaction
defined by syntax controlled dialogs. It also introduces new features including operator overloading
and exception handling, and is specifically designed to be platform independent.

Document Details

Title: Zonnon Language Report
Version: 02
Revision: 02
Issued: 11th October 2004

Language Designer: Prof. Jürg Gutknecht
Language Implementer: Eugene Zueff
Test Suite Implementer: Vladimir Romanov
Report Editors: Brian Kirk and David Lightfoot

Copyright © 2003, 2004 ETH Zurich. All rights reserved.
This document may be copied without charge for academic purposes provided that no changes are
made to the content, including this notice.

Published by:

Institute of Computer Systems
ETH Zentrum, RZ H 24
CH-8092 Zürich
Switzerland

The latest version of this report is available on-line at www.zonnon.ethz.ch
Please send details of any errors and omissions in this document to zonnon@inf.ethz.ch

Any product and company names mentioned in this document may be the trademarks of their
respective owners.

The contents of examples used in this document are fictitious and no association with any real
company, organization, product, service, domain name, e-mail address, logo, place or event is intended
or should be inferred.

The typographic conventions used in the report are:

New concepts are indicated in italics
Programming language keywords in the text are in italics.
Main headings are in 12-point Arial
Subheadings are in 11-point Arial
Sub-subheadings are in 10-point Arial
Sub-sub-subheadings are in 9-point Arial
Main text is in 10-point Times New Roman
Syntax is in 8-point Arial
References appear in square brackets e.g. [Compiler]
In general spelling is in ‘US English’

Zonnon Language Report: Draft v02 r02 Printed on 2004-11-01

Contents

1 Introduction...1
2 Program Construction...1
3 Syntax Notation..3

3.1 Definition of Extended Backus-Naur Formalism..3
3.2 EBNF defined in EBNF...3
3.3 Description of EBNF ..3

3.3.1 Sequence..3
3.3.2 Repetition ..3
3.3.3 Selection ..4
3.3.4 Option...4
3.3.5 Quotes and bold font ...4

4 Language Symbols and Identifiers..4
4.1 Vocabulary and Representation..4
4.2 Identifiers..4
4.3 Modifiers and Specifiers ..4
4.4 Numeric constants...5
4.5 Character constants ...5
4.6 String constants ...5
4.7 Reserved Words, Delimiters and Operators ...5

4.7.1 Reserved Words...6
4.7.2 Delimiters ..6
4.7.3 Predefined Operators ...6
4.7.4 User-Defined Operators ..6

4.8 Comments...6
5 Declarations..6

5.1 Identifier Declarations and Scope Rules ...6
5.1.1 Declaration Modifiers..7

5.2 Constant Declarations...7
5.3 Type Declarations...7

5.3.1 Basic Types ...7
5.3.2 Enumeration Types..8
5.3.3 Array Types...8
5.3.4 The string Type..9
5.3.5 Object Types ...9
5.3.6 Record Types ..10
5.3.7 Postulated Interface Types..10
5.3.8 Procedure Types...10
5.3.9 Converting between Types...10

5.4 Variable declarations..12
6 Expressions ...12

6.1 Operands and Designators...12
6.2 Predefined Operators ..13

6.2.1 Logical operators..13
6.2.2 Arithmetic operators ..13
6.2.3 Set Operators...13
6.2.4 Relations..14

6.3 User-Defined Operators and Operator Declarations...14
6.3.1 Basic Operators that can be overloaded...14
6.3.2 New Operator Declarations ..14
6.3.3 Rules governing overloading ...15

6.4 Operator Precedence...16
6.5 Numeric resolution within expressions ...16

7 Statements ...17
7.1 The Assignment Statement..17
7.2 The Procedure Call ...18
7.3 The if Statement...18
7.4 The case Statement ...18

Zonnon Language Report: Draft v02 r02 Printed on 2004-11-01

7.5 The while Statement ...19
7.6 The repeat Statement..19
7.7 The for Statement..20
7.8 The loop Statement...20
7.9 The return Statement..20
7.10 The Block and launch Statements..20

7.10.1 Exception handling ..21
7.10.2 Concurrency Modifiers and the launch Statement...21

7.11 The await Statement...21
7.12 The send Statement...22
7.13 The receive Statement ..22
7.14 The accept Statement ...22

8 Procedure (and Method) Declarations and Formal Parameters ...23
8.1 Procedure Modifiers ...23
8.2 Properties ..24

9 Predefined Procedures...25
10 Activities, Behavior and Interaction...25

10.1 Behavior..26
10.2 Interaction...26
10.3 Protocol EBNF ..26
10.4 Termination..27
10.5 Input and Output Procedures...27

10.5.1 Parameters and special syntax..27
10.5.2 Input Procedures...28
10.5.3 Output Procedures..28

11 Program Units...29
11.1 The module ...29
11.2 The object as a unit of program composition...30

11.2.1 Inheritance: refinement and aggregation..30
11.2.2 Multiple Inheritance...30
11.2.3 Polymorphism...30

11.3 The definition...30
11.4 The implementation..31

12 Reflection ..32
12.1 XML Schema ...32

12.1.1 Access rights ...32
12.1.2 Objects ...32
12.1.3 Procedure parameters (parameter passing mode): ..33
12.1.4 Procedure and Variable immutability:..33
12.1.5 Operator priority...33
12.1.6 Blocks and Procedure bodies ...33
12.1.7 Type, variable and constant widths...33
12.1.8 Enumeration cardinality..33

12.2 Example: program reflection and information...33
13 Definition of Terminology ...34

13.1 Numeric types..34
13.2 Same types..34
13.3 Equal types ...34
13.4 Assignment compatible ..34
13.5 Array compatible ...34
13.6 Expression compatible and Operator Overloading..34
13.7 Matching formal parameter lists...35

14 Syntax..35
15 References...38

Zonnon Language Report: Draft v02 r02 Printed on 2004-11-01 1

Zonnon Language Report

1 Introduction

Zonnon is a new programming language in the Pascal, Modula-2 and Oberon fa mily. It retains an
emphasis on simplicity, clear syntax and separation of concerns. Although more compact than
languages such as C#, Java and Ada, it is a general-purpose language suited to a wide range of
applications. Typically this includes component-oriented composition, concurrent systems, algorithms
and data structures, object-oriented and structured programming, graphics, mathematical programming
and low-level systems programming. Zonnon provides a rich object model which encapsulates
behavior and syntax controlled dialogs which encapsulate state. It may be used to write programs in
procedural or object-oriented styles [Zonnon] and is well suited for teaching purposes, from basic
principles right through to advanced concepts.

Unification of abstractions is at the heart of Zonnon’s design. This is reflected in its four pillars

• the Module—both a textual container and program composition object

• the Object—a type template for defining objects

• the Definition—a concept of abstraction and composition for defining interfaces

• the Implementation—a container for reusable fragments of object implementations

These entities provide the basis for program composition in the large and also for textual partitioning
and separate compilation during program development—they are ‘first-class citizens’ in the language.

The object model in Zonnon is based on the notion that ‘everything is an object’. It supports three
views of them, firstly as entities with an intrinsic type, used by abstract operators in a type-safe way,
secondly as providers of services accessed via defined interfaces and thirdly as autonomous agents
interoperating via formal dialogs. Activities are used both for adding behavior to objects and for
implementing dialogs, they integrate concurrency seamlessly into the language.

Many of the concepts in Zonnon have been drawn from its heritage. The intention has been to offer
expressive and cohesive features which have proved their worth. Zonnon also introduces some new
features such as operator overloading for representing mathematical and other expressions in a natural
way and exception handling for improving reliability. Some features have been reintroduced from
earlier members of the Pascal language family, for example the definition , implementation pairs and
enumeration types from Modula-2 and, for pragmatic reasons, a basic form of the read and write
statements from Pascal.

When choosing a language for building modern systems achieving interoperability between
programs written in different languages within the same system is an important consideration. The
Zonnon language is specifically designed to be platform-independent whilst supporting interoperability
with other software.

A companion document Compiler Implementation Details contains implementation specific details
for a particular compiler and runtime support package for a particular computing platform. (See
[Compiler])

2 Program Construction

Zonnon programs are based on four constructs: the module, object, definition and implementation.

A module has a dual nature: it declares a syntactic container for logically cohesive program
declarations and it simultaneously declares an object whose lifecycle is controlled by the system. So
the module provides the mechanism for the textual partitioning of a source program and also the
dynamic loading at execution time of a part of a program, in the form of an instantiated object.

Any number of dynamically created objects may have their lifecycles managed by a program, however
only a single instance of each module’s object may be instantiated by the system at any given time.
Because the module forms a unit of encapsulation and data hiding, it is also ideal as a container for
implementing abstract data types.

Zonnon Language Report: Draft v02 r02 Printed on 2004-11-01 2

An object is a type template comprising fields, methods and activities. The fields represent the object’s
state, the methods its functionality and the activities its concurrent behaviour. It can expose its interface
to its system environment in two ways. Firstly by its intrinsic interface, that is, the set of all the
elements which the programmer chooses to make public rather than keep private, and secondly by a
number of definitions, each of which exposes a distinct facet representing an aspect of the object’s
services to its clients.

A definition defines a distinct facet of an object in terms of an abstract interface comprising field
declarations and method signatures. Definitions can form a network of related types, not just a
hierarchy.

An implementation defines an aggregate of field and method implementations intended for re-use when
incorporated into a program via one or more object templates. An object implementing a definition is
required to implement all of its fields and methods. However, if an object imports an implementation of
a definition with the same name as the definition then this is implicitly presumed to be its (possibly
partial) implementation.

A program text comprises modules, objects, definitions and implementations. The program’s intrinsic
interface is the set of declarations made public by all of its parts. A run-time program comprises one or
more modules and any objects that are created dynamically. The system provides mechanisms for
dynamic program loading and unloading of modules and dynamic management of object resources at
execution time, when a program runs.

These constructs are used to form the overall structure of a program as module, object, definition and
implementation program units. Each construct may exist as a separately compiled unit or may be
textually embedded within certain of the other constructs. A number of relations hold between these
constructs which define how they may be used together; they are as follows, where x and y each
represent a construct:

x contains y
Construct x may have one or more of construct y textually nested within it.

x imports y
Construct x may import declarations from one or more construct y.

x aggregates from y
Construct x may import implementation fragments from a construct y.

x implements y
If the names of a definition and an implementation are identical then the implementation provides at
least part of the implementation of the definition , otherwise it may provide implementations for one
or more definitions.

x refines y
definition x refines definition y, omitting, adding to, or modifying its services.

The rules for valid use of the constructs (program units) are illustrated in Figure 1, they are:

A module unit can have definition, implementation and object constructs textually nested in it

module, definition, implementation and object units can import declarations from other module,
definition and object units

module, implementation and object units can aggregate from other implementation units

module, implementation and object units can implement definition constructs

definition constructs can refine other definition constructs

Zonnon Language Report: Draft v02 r02 Printed on 2004-11-01 3

x/y D I O M x/y D I O M x/y D I O M
D D + + + D
I I + + + I +
O O + + + O +
M + + + M + + + M +

x contains y x imports y x aggregates from y

x/y D I O M x/y D I O M Key:
D D + D= definition
I + I I = implementation
O + O O= object
M + M M= module

x implements y x refines y += Relation is valid

Figure 1 Valid relations between Constructs (Program Units)

3 Syntax Notation
The syntax of Zonnon is defined in an Extended Backus-Naur Formalism (EBNF) in section 14.
Relevant fragments of the syntax are also provided in the text as each feature of the language is
defined.

3.1 Definition of Extended Backus-Naur Formalism

The EBNF notation used in this report has the following features:

• Alternatives are separated by |.
• Brackets [and] denote that the enclosed expression is optional.
• Braces { and } denote repetition of the content (possibly 0 times).
• Parentheses (and) are used to form groups of items.
• Non-terminal symbols start with an upper-case letter (e.g. Statement).
• Terminal symbols either start with a lower-case letter (e.g. letter) , or are written in bold letters

(e.g. begin), or are denoted by strings (e.g. ":=").
• Comments start with // and continue to the end of the line.

3.2 EBNF defined in EBNF

It is possible to define the EBNF syntax using EBNF as follows:

Syntax = {Production}.
Production = NonTerminalSymbol "=" Expression ".".
Expression = Term {"|" Term}.
Term = Factor {Factor}.
Factor = terminalSymbol | NonTerminalSymbol |
 (" Expression ")" | "[" Expression "]" | "{" Expression "}" .

3.3 Description of EBNF

The EBNF constructs are described below:

3.3.1 Sequence

A = BC.

An A consists of a B followed by a C

Examples:
Sentence = Subject Predicate.
FileName = Name '.' Extension.
Name = FirstName Surname.

3.3.2 Repetition

A = {B}.

An A consists of zero or more B's.

Examples:

File = {Record}.

Zonnon Language Report: Draft v02 r02 Printed on 2004-11-01 4

Bill = {Item Price}.

3.3.3 Selection

A = B | C.

An A consists of a B or a C.

Examples:

Fork = Resource | Data.
Meal = Breakfast | Lunch | Dinner.

3.3.4 Option

A = [B].

An A consists of a B or nothing.

Example:

SelectedDrink = [Tea | Coffee | Chocolate]. // Possibly none!

3.3.5 Quotes and bold font

Text in quotes or in a bold font stands for itself.

Examples:

ImportDeclaration = import Import {"," Import}.
OwnSymbol = "me" | self .

4 Language Symbols and Identifiers

4.1 Vocabulary and Representation

In Zonnon s ymbols are identifiers, numbers, strings, operators, and delimiters. There are some lexical
rules:

• Blanks and line breaks must not occur within symbols and are ignored unless they are
essential to separate two consecutive symbols (except in comments, and within strings).

• Capital and lower-case letters are considered as distinct.

4.2 Identifiers

Identifiers are sequences of letters and digits and underscores ‘_’. The first character must be a letter or
an underscore.

ident = (letter | "_") { letter | digit | "_" }.

Examples:

X Scan Zonnon GetSymbol firstLetter

_external_package27 // underscore typically used for interoperability with other languages

4.3 Modifiers and Specifiers

A modifier is used to indicate alternative semantics, where the same syntax is used for more than one
purpose. It is a list of words, numbers and other symbols contained in braces { }.

Examples:

{ value }
{ public }

A specifier is used to provide additional information such as the type of an expected object, or a width.
It comprises a list of words or numbers contained in braces {} or an EBNF protocol specification (See
also 10.3)

Examples:

Zonnon Language Report: Draft v02 r02 Printed on 2004-11-01 5

var r: real{32};
i := integer(t);
{ bodypart = LEG | NECK| ARM}

4.4 Numeric constants

Numbers are (unsigned) integer, cardinal or real constants. If the constant is specified with the suffix H,
the representation is hexadecimal, otherwise the representation is decimal. A real number always
contains a decimal point and optionally it may also contain a decimal scale factor. The letter E means
‘times ten to the power of’. A numeric constant may optionally be followed by a width modifier which
is the number of bits to be used for its representation (surrounded by braces). If no width is specified
then the default value defined in the Compiler Implementation Details [Compiler] is used. For further
information on types see 13.1.

number = (whole | real) ["{" Width "}"].
whole = digit {digit} | digit {hexDigit} "H".
real = digit {digit} "." {digit} [ScaleFactor].
ScaleFactor = "E" ["+" | "-"] digit {digit}.
hexDigit = digit | "A" | "B" | "C" | "D" | "E" | "F".
digit = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9".
Width = ConstExpression.

A whole constant is compatible with both integer (signed) types and cardinal (unsigned) types.

Examples:

constant type value

1991 integer/cardinal 1991
0DH{8} integer{8}

cardinal{8}
13

12.3 real 12.3
4.567E8 real 456700000
0.57712566E-6{64} real{64} 0.00000057712566

4.5 Character constants

A character constant is a character enclosed in single (') or double (") quote marks. The opening quote
must be the same as the closing quote and must not be the character itself. Character constants may also
be denoted by the ordinal number of the character in hexadecimal notation followed by the letter X.

CharConstant = '"' character '"' | "'" character "'" | digit { HexDigit } "X".
character = letter | digit | Other.
Other = // Any character from the alphabet except the character used as the delimiter

This is useful for expressing special characters that are either non-printable or that are part of an
extended character set.

Examples:

"a" 'n' "'" '"' 20X

4.6 String constants

String constants are sequences of characters enclosed in single (') or double (") quote marks. The
opening quote must be the same as the closing quote and must not occur within the string. The number
of characters in a string is called its length. A single character string (of length 1) can be used wherever
a character constant is allowed and vice versa. String constants can be assigned to variables of type
string (see 5.3.1 and 5.3.4).

string = '"' { character } '"' | "'" { character } "'".
character = letter | digit | Other.
Other = // Any character from the alphabet except the string's own delimiter character

Examples:

"Zonnon" "Don't worry!" "x" 'hello world'

4.7 Reserved Words, Delimiters and Operators

Operators and delimiters are the special characters, character pairs, or reserved words listed below.

Zonnon Language Report: Draft v02 r02 Printed on 2004-11-01 6

4.7.1 Reserved Words

The following reserved words (shown in bold in this report) may not be used as identifiers and are
written either entirely in lower-case letters:

accept activity array as await begin by case const definition div do else elsif end exception exit false for
if implementation implements import in is launch loop mod module new nil object of on operator or
procedure receive record refines repeat return self send then to true type until var while

or entirely in upper-case letters:

ACCEPT ACTIVITY ARRAY AS AWAIT BEGIN BY CASE CONST DEFINITION DIV DO ELSE ELSIF END
EXCEPTION EXIT FALSE FOR IF IMPLEMENTATION IMPLEMENTS IMPORT IN IS LAUNCH LOOP MOD
MODULE NEW NIL OBJECT OF ON OPERATOR OR PROCEDURE RECEIVE RECORD REFINES REPEAT
RETURN SELF SEND THEN TO TRUE TYPE UNTIL VAR WHILE

4.7.2 Delimiters

The delimiter characters are:

() [] { } . (dot) , (comma) ; (semicolon) : (colon) .. (range)

| (case separator) ' (single quote) " (double quote)

4.7.3 Predefined Operators

The predefined operators are:

- (unary minus) + (unary plus) ~ (negation)

^ (unary dereference)

+ - * / div mod & or

:= (assignment) = (equality) # (not equal) < <= > >= in implements

4.7.4 User-Defined Operators

Zonnon introduces the concept of user-defined operators. They are declared like procedures. (See 6.3).

4.8 Comments

Comments may be inserted between any two symbols in a program. They are arbitrary character
sequences opened by the bracket (* and closed by *). Comments may be nested. They do not affect the
meaning of a program. They are shown in italics in this report.

5 Declarations

5.1 Identifier Declarations and Scope Rules

Every identifier occurring in a program must be introduced by a declaration, unless it has been
predefined. Declarations also specify certain permanent properties of an item, such as whether it is a
constant, a type, a variable (see 5.4), or a procedure (see section 8). The identifier is then used to refer
to the associated item.

The scope of an identifier extends textually from the point of its declaration to the end of the scope
to which the declaration belongs and hence to which it is local. It excludes the scopes of equally named
identifiers which are declared in nested blocks. The scope rules are:

• No identifier may denote more than one item within a given scope (i.e. no identifier may be
declared twice in a block).

• An identifier may only be referenced within its scope.

• Identifiers denoting object fields or methods/procedures are valid only in object designators,
where they must be qualified by the name of the object.

QualIdent = { ident "." } ident.

Examples:

Month.Oct (* see 5.3.2 *)

Zonnon Language Report: Draft v02 r02 Printed on 2004-11-01 7

NameSpace.Program

5.1.1 Declaration Modifiers

A declaration may have an optional modifier. The declaration modifiers are defined as follows:
• private: the identifier is visible only in the scope of its declaration.
• public: the identifier is visible in the scope in which it is declared and in any constructs

that explicitly imports the program construct that contains its declaration.
• immutable: is used for variables in conjunction with public and indicates that the value is

read-only from outside the scope in which it is declared.

Example:

var {private} flag: boolean;
var {public, immutable} refCount: integer; (*read only access*)

5.2 Constant Declarations

A constant declaration associates an identifier with a constant value.

ConstantDeclaration = ident "=" ConstExpression.
ConstExpression = Expression.

Examples:

const N = 10;
 limit = 2*N – 1; (* see 6.2.2*)
 fullSet = { min(set) .. max(set) }; (* see 5.3.1 *)

A constant expression is an expression that can be evaluated solely by a textual scan without actually
executing the program. Its operands must be constants or calls of predefined functions.

5.3 Type Declarations

A data type determines the set of values variables of that type may assume and the operators that are
applicable to them. A type declaration associates an identifier with a type. In the case of the structured
types (arrays and objects) it also defines the structure of variables of this type. Object types are defined
in 5.3.4 and 11.1

TypeDeclaration = ident "=" Type.
Type = (TypeName [Width] | EnumType | ArrayType | ProcedureType | InterfaceType).
Width = "{" ConstExpression "}".

5.3.1 Basic Types

The basic types are denoted by predefined identifiers. The associated operators are defined in 6.2 and
the predefined function procedures in 9. The values of the basic types are the following:

• object the generic type from which object types are derived
• boolean the truth values true and false
• char the underlying character set of the environment
• cardinal positive whole numbers between min(cardinal) and max(cardinal)
• integer the integers between min(integer) and max(integer)
• fixed large numbers with fixed precision between min(fixed) and max(fixed)
• real the real numbers between min(real) and max(real)
• set the sets of whole numbers (integer or cardinal) between 0 and max(set)
• string character strings

Note that object is a reserved word.

For types char, integer, cardinal, real and set the number of bits required to contain the value can be
specified by a modifier stating a whole number of bits as a constant value in braces { } after the type
name. The default type widths are:

char{16}, cardinal {32}, integer{32}, real {80}, set{32}, fixed 128

 For conversion between different types see section 5.3.9.

Zonnon Language Report: Draft v02 r02 Printed on 2004-11-01 8

5.3.2 Enumeration Types

An enumeration is a type that comprises a named list of identifiers denoting the values which constitute
the type. These identifiers are qualified by the type name when used as named constants in the
program. The values are ordered and their ordering relation is defined by their textual sequence in the
enumeration list. No other values belong to the type. The ordinal number of the first value is zero and
increases by one for each subsequent identifier.

EnumType = "(" IdentList ")".
IdentList = ident { "," ident }.

Examples:

type NumberKind = (Bin, Oct, Dec, Hex);
 Month = (Jan, Feb, Mar, Apr, May, Jun, July, Sep, Oct, Nov, Dec);

Names in separate enumerations need not be different as their use is always qualified. So for example
NumberKind.Oct is distinct from Month.Oct.

Values of expressions can be converted to a different type. (See section 5.3.9).

The predefined function pred returns the value of the predecessor of the enumeration value given as its
parameters, for all except the first value of the enumeration. The predefined function succ returns the
value of the successor of the enumeration value given as its parameters, for all except the last value of
the enumeration.

5.3.3 Array Types

An array is a structure consisting of a number of elements that are all of the same type, called the
element type. Arrays can be indexed either by a positive whole number or by a value of an enumeration
type. In the first case, the number of elements in the array’s declaration determines its length. The
array’s elements are designated by indices, which are whole -number values between 0 and the array
length minus 1. In the second case the name of the enumeration type is used in the declaration and the
array’s elements are designated by values of the enumeration type.

The syntax rules for the array type are:

ArrayType = array Length {"," Length} of Type.
Length = ConstExpression | "*".

Arrays can be multidimensional; that is, the array elements may themselves be arrays, and mixing the
different length specification forms is acceptable in principle. But this possibility may well be restricted
by the implementation. (See [Compiler]). An example and a counter example are:

type Acceptable = array * of array 42 of T; (* array *, 42 of T *)
 Jagged = array 42 of array * of T; (* 'jagged' array *)

The declaration array m of array n of T is textually equivalent to array m, n of T.

For example array * of array 42 of T can be written array *, 42 of T

The expression len(a, n) returns the number of elements in dimension n of the array a. The expression
len(a) is a shorthand for len(a, 0).

In an array the number of elements in any dimension may be variable and is then denoted by an
asterisk. It is the programmer’s responsibility to allocate storage space on the heap for an array by
using the reserved word new for each instance of the array:

arrayVariable := new ArrayType(length0, length1, …);

The length values must be expressed by positive expressions of integer or cardinal type and the number
of such expressions must correspond to the number of dimensions of the variable.

Examples of the use of arrays are:

type Vector = array * of integer;

procedure CreateAndReadVector(var a: Vector);
 var i, n: integer;
begin
 read(n);
 a := new Vector(n);
 for i := 0 to len(a) – 1 do
 read(a[i])

Zonnon Language Report: Draft v02 r02 Printed on 2004-11-01 9

 end
end CreateAndReadVector;

procedure InitializeMatrix(var mat: array *, * of real);
 var i, j: integer;
begin
 for i := 0 to len(mat, 0) - 1 do
 for j := 0 to len(mat, 1) – 1 do
 mat[i, j] := 0.0
 end
 end
end InitializeMatrix;
…
var m: array 10, 10 of real;
…
InitializeMatrix(m);

5.3.4 The string Type

Variables of type string represent immutable sequences of characters. Strings can be compared for
equality and inequality by using the ‘=’ and ‘#’ operators. The operator ‘+’ signifies concatenation of
strings and ‘:=’ signifies assignment. The predefined procedure copy converts between string type and
array of char representation and vice versa. (See [CLI]).

5.3.5 Object Types

An object is a data type template comprising fields, methods and activities. The fields represent the
object’s state, the methods its functionality and the activities its concurrent activities. It can expose its
interface to its system environment in two ways. Firstly by the interface of its intrinsic type (referred to
as its intrinsic interface), that is the set of all the elements which the programmer chooses to make
public rather than keep private. Secondly by one or more definitions, each of which exposes a distinct
facet representing an aspect of the object’s services to its clients.

Object = object [ObjModifier] ObjectName [FormalParameters] [ImplementationClause] ";"
 [ImportDeclaration]
 Declarations
 { ActivityDeclaration }
 (BlockStatement | end) SimpleName.
ObjModifier = "{" ident "}". // value or ref
 // private or public
ActivityDeclaration = activity ActivityName [ImplementationClause] ";"
 Declarations (BlockStatement | end SimpleName).
ImplementationClause = implements DefinitionName { "," DefinitionName }.

ImportDeclaration = import Import { "," Import } ";".
Import = ImportedName [as Ident].
ImportedName = (ModuleName | ImplementationName | NamespaceName |
 DefinitionName, ObjectName).

An object is composed of declarations including constants, types, variables (referred to as fields), and
procedures (referred to as methods). The modifiers public and private can be used to declare the
visibility of the contents of an object. If no modifier is present then the default is private.

Individual items may be made public by explicit use of the modifier {public} following their
declaration. The object itself can also have a modifier which denotes it as either a value object or a
reference object using the modifier values value and ref respectively. The default modifier is value.

Variables which are reference objects are references to objects which are created dynamically
during program execution within the program using new. An object may optionally have parameters
which can be used in the body of the object to initialize fields when the object is instantiated using new.

Examples:

object {ref} Box(w, h: integer);
 var width, height: integer;

 procedure Area(): integer;
 begin
 return width * height
 end Area;

begin
 self.width := w; self.height := h (* self is optional in both cases here *)

Zonnon Language Report: Draft v02 r02 Printed on 2004-11-01 10

end Box.
…
var box: Box;
…
box := new Box(3, 7); (* makes new Box object with width 3 and height 7 *)

See 11.2 on OBJECTs as program units.

5.3.6 Record Types

A record is a value object type. It can be used to encapsulate constant, type and variable declarations
but not methods or activities. The keyword record is equivalent to object {value}. Variables which are
declared as records (value objects) are statically allocated at compile time.

Examples:

record Position; (* declares the 'record'-type Position *)
 var x, y: integer
end Position;

which is equivalent to:

object {value} Position; (* declares the 'record'-type Position *)
 var x, y: integer
end Position;

record Date; (* declares the 'record'-type Date *)
 var year: integer{8};
 month: Month;
 day: integer{8}
end Date;

5.3.7 Postulated Interface Types
An interface is a postulated implementation for an object composed from one or more definitions. See
5.3.8 and 11.2 for further details.

InterfaceType = object [PostulatedInterface].
PostulatedInterface = "{" DefinitionName { "," DefinitionName } "}".

5.3.8 Procedure Types

A variable of a procedure type T has a procedure or method P or nil as its value. If P is assigned to a
variable of type T, the formal parameter lists of P and T must match according to a set of rules. (See
13.4). P must not be a predefined procedure nor may it be local to another procedure. When a method
is assigned to a variable of type procedure it must be prefixed by (the designator of) an object instance
that contains it.

ProcedureType = procedure [ProcedureTypeFormals].
ProcedureTypeFormals = "(" [PTFSection { ";" PTFSection }] ")" [":" FormalType].
PTFSection = [var] FormalType { "," FormalType }.
FormalType = { array "*" of } (TypeName | InterfaceType).

Examples:
 <missed>

5.3.9 Converting between Types

In Zonnon, type conversions within a ‘family’ (such as integer) are implicit when guaranteed to be
safe. However, conversions between families must be explicit (because a change of internal
representation is involved). Inverse conversions (for example, integer {32} to integer {16}) must
always be explicit. The exception mechanism detects conversion anomalies (see 7.10.1).

Zonnon Language Report: Draft v02 r02 Printed on 2004-11-01 11

The interoperability between types is summarized in the table below and is based on the ECMA
Common Type System model [CLI], as used in .NET:

Type family Size in bits
 8 16 32 64 128
fixed M
 ä
real M à M
 ä ä1
integer M à M à M à M
 ä ä ä
cardinal M à M à M à M
 á ä
char M

M mandatory type for conforming implementation
à implicit conversion always allowed (within same family)
ä, á explicit conversion always allowed (change of representation)
1 may result in reduction of the value’s resolution

Note that implicit conversions are transitive and inverse conversion (in opposite direction of the
arrows) requires an explicit conversion and may result in truncation or an exception.

5.3.9.1 Type name used as conversion function

To achieve a type conversion, the name of the destination type is regarded as a built-in function which
takes an expression of the source type as a parameter and returns the converted value. An optional
second parameter indicates the desired width of the result.

Syntax:

TypeConversion = TypeIdentifier "(" expression ["," Width] ")".

Examples:

integer(x + e/f, 16)

is the value of the expression x + e/f represented as a 16-bit integer (exception may be raised if
conversion not possible).

integer(x + e/f)

is the value of the expression x + e/f represented as a 32-bit integer (assuming that 32 is the
implementation’s default width for integer).

Note that integers cannot be implicitly conversion to real and so:

var count, sum: integer; mean: real;
…
 mean := sum / count

is not syntactically allowed and requires explicit conversions:

 mean := real(sum) / real(count)

5.3.9.2 Implicit type of constant

The type of a simple numeric constant is determined by the declaration of the variable to which it is
assigned. So for instance, given the declaration:

var i: integer {16};

then the assignment

i := 1;

is actually treated by the compiler as being

i := 1{16};

If no width is specified, then the implementation's default width for that type is assumed [Compiler].

Other type conversions are achieved by means of predefined procedures (see 9).

Zonnon Language Report: Draft v02 r02 Printed on 2004-11-01 12

5.4 Variable declarations

A variable holds a value that can be assigned to it from an expression in an assignment operation (see
7.1). A variable is defined to have a type, which may not change, and which defines the set of values
that it may hold. Variable declarations introduce variables by defining an identifier and a data type for
each one.

VariableDeclaration = IdentList ":" Type.

Examples:

var i, j, k: integer;
 x, y: real;
 p, q: boolean;
 s: set {32};
 a: array 100 of real;
 name: array 32 of char;
 size, count: integer;
 mousePosition: Position;
 dateOfBirth, today: Date;

6 Expressions

An expression is a construct which specifies a computation. In an expression constants and current
values of variables are combined to compute other values by the application of operators and function
procedures. An exp ression consists of operands and operators; parentheses may be used to express
specific associations of operators and operands. The types of intermediate values used during
expression evaluation are the responsibility of the implementation (see [Compiler]). The type of the
result of an expression is defined in the section on expression compatibility (see 13.6).

6.1 Operands and Designators
With the exception of set constructors and literal constants (numbers, character constants, or strings),
operands are denoted by designators. A designator consists of an identifier referring to a constant,
variable, or procedure. This identifier may possibly be qualified by an identifier denoting a module,
definition, implementation or object and may be followed by selectors if the designated object is an
element of a structure.

Designator = Instance
 | Designator "{" Type “}” // Conversion
 | Designator "^" // Dereference
 | Designator "[" Expression { "," Expression } "]" // Array element
 | Designator "(" [ActualParameters] ")" // Function call
 | Designator "." MemberName // Member selector
Instance = (self | InstanceName | DefinitionName "(" InstanceName ")").
ActualParameters = Actual { "," Actual }.
Actual = Expression ["{" [var] FormalType "}"]. // Argument with type signature

The ^ symbol is used so that a reference can optionally be made explicit in a program text.

Examples:

designator type meaning

size integer value of the variable called size

a[i] real the element of the array a at position i

dateOfBirth.day integer{8} the day field of the object called dateOfBirth

w[3].name[i] char the element at position i in the name field of the
element at position 3 of the array called w

If a designates an array, then a[e] denotes that element of a whose index is the current value of the
expression e. The expression e must be of either an enumeration, cardinal or integer type. A designator
of the form a[e0, e1, …., en] stands for a[e0][e1]….[en].

If obj designates an object, then obj.f denotes the field f of obj or the method f of the object obj, (see
11.1).

If the designated object is a constant or a variable, then the designator refers to its current value. If
it is a procedure without any parameter list, the designator refers to the procedure itself. However, if it
is a function procedure and is followed by a (possibly empty) parameter list it causes an activation of

Zonnon Language Report: Draft v02 r02 Printed on 2004-11-01 13

that procedure and stands for its resulting value. The actual parameters must correspond to the formal
parameters as in proper procedure calls. (See 7.2).

6.2 Predefined Operators

Predefined operators are fixed and built into the language.

6.2.1 Logical operators

These operators apply to boolean operands and yield a boolean result.

or logical disjunction p or q ‘if p then true, else q’
& logical conjunction p & q ‘if p then q, else false’
~ negation ~ p ‘not p’

6.2.2 Arithmetic operators

The operators +, -, and * apply to operands of numeric types in an expression. (See 6.3.1). The division
operator / applies only to operands of type real and produces a result of type real. When used as
monadic operators, - denotes sign inversion and + denotes the identity operation.

+ sum
- difference
* product
/ real quotient (of reals)

Examples:

i :=j + k;
x := real(i) / float(j); (* see section 5.3.9*)

The operators div and mod apply to integer and cardinal operands only.

div integer quotient
mod modulus

They are related by the following formulas defined for any x and positive divisors y:

x = (x div y) * y + (x mod y)
0 <= (x mod y) < y

If the value of the divisor y is negative then the meanings of the operators div and mod are
mathematically ambiguous and so are left undefined, their effect is implementation specific. (See
[Compiler]). It is recommended that programmers test for this condition and employ mathematics to
ensure that only positive divisors values are used.

Examples:

 x y x div y x mod y
 5 3 1 2
 -5 3 2 1

6.2.3 Set Operators

Set operators apply to operands of type set and yield a result of type set. The declared bit widths of the
operand SETs must be identical. The monadic minus sign denotes the complement of x, that is, -x
denotes the set of integers between 0 and max(set) which are not elements of x.

+ union bitwise or

- difference (x - y = x * (-y)) bitwise subtraction

* intersection bitwise and

/ symmetric set difference (x / y = (x-y) + (y-x)) bitwise exclusive or

A set constructor defines the value of a set by listing its elements, if any, between braces. The elements
must be integers in the range 0 .. max(set). A range m .. n denotes all integers in the interval starting
with element m and ending with element n, inclusive of m and n. If m > n then m .. n denotes an empty
set.

Zonnon Language Report: Draft v02 r02 Printed on 2004-11-01 14

Examples of the use of sets:

const left = 0; right = 1; top = 2; bottom = 3;
var edges: set; x, y: integer;
begin
 edges := { }; (* the empty set *)
 if x < xMin then edges := edges + {left}
 …
 if left in edges then … (* clip at left *)

const opCodemask = {0..3};
var opCode, word: set;
 …
 opCode := word * opCodeMask; (* extract the op-code *)

6.2.4 Relations

Relations yield a boolean result. The relations =, #, <, <=, >, and >= apply to the numeric types and
char. The relations = and # also apply to boolean and set, as well as to procedure types (including the
value nil). x in s stands for ‘x is an element of s’. x must be of an integer type, and s of type set.

= equal
unequal
< less
<= less or equal
> greater
>= greater or equal
in set membership
implements x implements D is true if object x implements definition D
is x is T is true if the intrinsic type of x is T

Examples of expressions

expression type meaning

1991 integer simple constant value

i div 3 integer integer division of i by 3

~wellFormed or outOfRange boolean (not well-formed) or out-of-range

(i+j) * (i-j) integer arithmetic expression

s - {8, 9, 13} set{8} s with 8, 9, 13 removed

keys in {left, right} boolean keys is left or right or both

('0'<=ch) & (ch<='9') boolean ch is a digit

6.3 User-Defined Operators and Operator Declarations

Operator overloading introduces the notion of user-defined operators and the opportunity to use normal
syntax in expressions involving them. Operators are defined only in a module implementing an abstract
data type i.e. which defines a new user-defined type and implements a set of operations on it. Typically
this can be used when introducing new data types such as complex numbers or matrices.

6.3.1 Basic Operators that can be overloaded

The set of predefined operators that can be overloaded is as follows:

- (unary minus) + (unary plus) ~
^ (unary dereference)
+ - * / div mod & or
= # < <= > >= in
:= (assignment is a special case, see 6.3.3)

Note that the implements and is operators cannot be overloaded, (see 11.1).

6.3.2 New Operator Declarations

Overloaded operators are introduced as operator declarations. The syntax of the declaration is as
follows:

Zonnon Language Report: Draft v02 r02 Printed on 2004-11-01 15

OperatorDeclaration = operator [ProcModifiers] OpSymbol [FormalParameters] ";" OperatorBody ";".
OperatorBody = Declarations BlockStatement OpSymbol.
OpSymbol = String. // a 1- or 2-character string; the set of possible symbols is restricted

Example:

operator '+' (x1, x2: Complex): Complex;
var res: Complex;
begin
 res.re := x1.re + x2.re;
 res.im := x1.im + x2.im;
 return res
end '+';
For overloaded operators the number of parameters in an operator declaration must be the same as

that of the predefined operator with the same symbol.
In the user defined operator for assignment there must be two parameters, and the first one must be

passed by reference.
It is only possible to declare overloaded operators in a module, but not in an object or definition.

The reason is to enable complete overloading resolution statically at compile time. This is also intended
to clearly separate two concepts: objects implementing interfaces (definitions) and abstract data types
with associated operators.

Operator declaration can be made available outside the module where it is declared. In that case, it
is legal to use those operators in units importing the module in normal exp ressions, together with the
predefined operators. The compiler is responsible for selecting the right version of the operator in each
case.

It is possible to define operators in a module to extend an abstract data type. These operators must
be defined in terms of the operations already defined in the module where the abstract data type is
declared.

Normally, all imported entities should be qualified by the name of the imported unit. This is also
possible, but not required, for operators. For example, there are two legal ways to use ‘new addition’
for operands of some type T.

module M;
 type T {public}= …;
 operator {public}"+" (a, b : T) : T; begin …end "+";
end M.

object Obj;
 import M;
 var x, y : T;
begin
 x := x + y; (* like a normal expression *)
 x := x M."+" y; (* fully qualified, but less conventional *)
end Obj.

An operator procedure cannot be called as a normal function:

x := M."+"(x, y); (* not legal; must use expression notation *)

6.3.3 Rules governing overloading

The following set of rules applies to overloaded operators:

1) The type of at least one operand of an overloaded operator must be a user-defined type
(an array type, an object type, a procedure type, an enumeration type). It is illegal to
introduce user-defined operator versions for ‘basic’ types such as integer, real, and
boolean.

2) Specifying an object type with a postulated interface (such as object { D }) as the
operator’s parameter is not allowed. The reason is that it must be possible to resolve
operator overloading completely at compile time (i.e. statically).

3) There are no restrictions on the result type of an overloaded operator.

4) The number of arguments, the precedence of an overloaded operator and the form (prefix
or postfix) of unary operators, must be the same as those features for predefined operators
with the same symbols .

5) The dereference construct with ‘^’ symbol (see Designator production in the syntax) is
considered here as postfix unary operator. Therefore, any overloaded ̂ operator keeps the

Zonnon Language Report: Draft v02 r02 Printed on 2004-11-01 16

form of unary postfix operator; similarly, unary + and – operators are always unary prefix
operators.

6) It is also possible to overload assignment. In this case, the assignment symbol is
considered as a special operator with the symbol ‘:=’ performing a certain side effect and
producing no value.

7) In the overloaded operator for assignment there must be two parameters, and the first one
must be passed by reference.

8) It is legal to specify more than one version of the overloaded operators with the same
symbol; in that case, the types of the parameters of the corresponding operator
declarations must differ from any other operator declaration for the same symbol. (See
section 6.3.1).

6.4 Operator Precedence

Four classes of operators with different levels of precedence (binding strengths) are syntactically
distinguished when used in expressions. Operators of the same precedence associate from left to right.
For example, x – y - z stands for (x - y) - z. Operator precedence from highest to lowest is:

1. unary negation operator ~

2. multiplication operators

3. addition operators

4. relations

Operators are used in expressions:

Expression = SimpleExpression
 [("=" | "#" | "<" | "<=" | ">" | ">=" | in) SimpleExpression]
 | Designator implements DefinitionName.
SimpleExpression = ["+"|""] Term { ("+" | "" | or) Term }.
Term = Factor { ("*" | "/" | div | mod | "&") Factor }.
Factor = number
 | CharConstant
 | string
 | nil
 | Set
 | Designator
 | new TypeName ["(" ActualParameters ")"]
 | new ActivityInstanceName
 | "(" Expression ")"
 | "~" Factor.
Set = "{" [SetElement { "," SetElement }] "}".
SetElement = Expression [".." Expression].
The available operators are listed in the following tables. Some operators are applicable to operands

of various types, denoting different operations. In these cases, the actual operation is effectively
‘overloaded’ and the appropriate one to use is identified by the type of the operands. The operands
must be expression compatible with respect to the operator, see 13.6.

6.5 Numeric resolution within expressions

An expression consists of a series of evaluations of operators on their operands. For each operator the
relationship between the resolution of each of its operands and the result of the operation is defined as
follows:

operator first operand second operand result
+ integer{s} integer{t} integer{max¹(s, t)}
- integer{s} integer{t} integer{max¹(s, t)}
* integer{s} integer{t} integer{s + t}
div integer{s} integer{t} integer{s}
mod integer{s} integer{t} integer{t}
+ cardinal{s} cardinal{t} cardinal{max¹(s, t)}
- cardinal{s} cardinal{t} cardinal{max¹(s, t)}
* cardinal{s} cardinal{t} cardinal{s + t}

Zonnon Language Report: Draft v02 r02 Printed on 2004-11-01 17

div cardinal{s} cardinal{t} cardinal{s}
mod cardinal{s} cardinal{t} cardinal{t}
+ real{s} real{t} real{max¹(s, t)}
- real{s} real{t} real{max¹(s, t)}
* real{s} real{t} real{s + t}
/ real{s} real{t} real{ s + t}
+ fixed fixed fixed
- fixed fixed fixed
* fixed fixed fixed
/ fixed fixed fixed

¹ max(s, t) = s, if s > t else t

7 Statements

Statements denote actions. There are elementary and structured statements. Elementary statements are
not composed of any parts that are themselves statements. They are the assignment, the procedure call,
await, return and exit statements. Structured statements are composed of parts that are themselves
statements. They are used to express sequencing and conditional, selective, and repetitive execution. A
statement may also be empty, in which case it denotes no action. The empty statement is included in
order to relax punctuation rules in statement sequences.

Statement = [Assignment
 | ProcedureCall
 | IfStatement
 | CaseStatement
 | WhileStatement
 | RepeatStatement
 | LoopStatement
 | ForStatement
 | await Expression
 | exit
 | return [Expression]
 | BlockStatement
 | launch Statement
 | Send
 | Receive].

Statement sequences denote the sequence of actions specified by the component statements which are
separated by semicolons.

StatementSequence = Statement {";" Statement}.

Example:

temp := a; a := b; b := temp (* swap values in a and b*)

7.1 The Assignment Statement

An assignment statement replaces the current value of a variable by a new value specified by an
expression. The expression must be assignment compatible with the variable. (See 13.4). The
assignment operator is written as ‘:=’ and pronounced as ‘becomes’.

Assignment = Designator ":=" Expression.

Examples:

i := 0;
p := i = j;
x := i + 1;
k := log2(i+j);
F := log2;
s := {2, 3, 5, 7, 11, 13};
a[i] := (x+y) * (x-y);
t.key := I;
w[i+1].name := "John";
t := c;

Zonnon Language Report: Draft v02 r02 Printed on 2004-11-01 18

7.2 The Procedure Call

Within a module a procedure call invokes a procedure. When it is declared within an object a procedure
is referred to as a method. In either case it may contain a list of actual parameters which replace the
corresponding formal parameters defined in the procedure declaration. (See section 8). The
correspondence is established by the relative ordering of the parameters in the actual and formal
parameter lists. There are two kinds of parameters: variable and value parameters.

If a formal parameter is a variable parameter, the corresponding actual parameter must be a
designator denoting a variable. If it denotes an element of a structured variable, the component
selectors are evaluated when the formal/actual parameter substitution takes place, i.e. before the
execution of the procedure. If a formal parameter is a value parameter, the corresponding actual
parameter must be an expression. This expression is evaluated before the procedure activation, and the
resulting value is assigned to the formal parameter.

ProcedureCall = Designator.

Examples:

WriteInt(i*2+1)
inc(w[k].count)
t.Insert("John")

A method call consists of the name of an object, followed by a period and then the name of a procedure
declared within the object type declaration of the object. Within the method the reserved word self
refers to the object on which the method was called.

A specific procedure call may also be ‘safeguarded’, by prefixing the object with a definition. For
example:

object T implements I, D; … end T;
var t: T;

A client who wants to make specific use of t’s interpretation of the services specified by D (e.g. as a
supercall) would then simply call D’s methods and fields safeguarded by t:

D(t).f(..); ..; .. := D(t).x;

The order in which the parameters is evaluated during procedure/method invocation is defined in the
Compiler Implementation Details [Compiler].

7.3 The if Statement
IfStatement =
 if Expression then StatementSequence
 {elsif Expression then StatementSequence}
 [else StatementSequence]
 end.

Example:

if (ch >= "A") & (ch <= "Z") then ReadIdentifier
elsif (ch >= "0") & (ch <= "9") then ReadNumber
elsif (ch = " ' ") or (ch = ' " ') then ReadString
else SpecialCharacter
end

An if statement specifies the conditional execution of guarded statement sequences. The expression
preceding a statement sequence is called its guard and its type must be boolean. The guards are
evaluated in sequence of occurrence; if one evaluates to true, its associated statement sequence is
executed. If no guard is satisfied, the statement sequence following the symbol else is executed, if there
is one.

7.4 The case Statement

The case statement specifies the selection and execution of a statement sequence according to the value
of an expression. First the case expression is evaluated then the statement sequence whose case label
list contains the obtained value is executed. The case expression must either be of an integer or cardinal
type that is expression compatible (see 13.6) with the types of all case labels, or both the case
expression and the case labels must be of type char or an enumeration. case labels are constants, and
no value must occur more than once. If the value of the expression does not occur as a label of any

Zonnon Language Report: Draft v02 r02 Printed on 2004-11-01 19

case, the statement sequence follo wing the symbol else is selected, if there is one, otherwise the
UnmatchedCase exception is raised.

CaseStatement = case Expression of Case {"|" Case} [else StatementSequence] end.
Case = [CaseLabelList ":" StatementSequence].
CaseLabelList = CaseLabels {"," CaseLabels}.
CaseLabels = ConstExpression [".." ConstExpression].

Example:

case ch of
"A" .. "Z": ReadIdentifier (* assumes contiguous encoding of letters*)
| "0" .. "9": ReadNumber
| "'", '"': ReadString
else SpecialCharacter
end

case month of
 Month.Apr, Month.Jun, Month.Sep, Month.Nov: days := 30
| Month.Feb: if Leap(year)
 then days := 29
 else days := 28
 end
 else days := 31
end

7.5 The while Statement

The while statement specifies the repeated execution of a statement sequence while the expression of
type boolean (its guard) yields true. The guard is checked before every execution of the statement
sequence and so the statement sequence will be executed zero or more times.

WhileStatement = while Expression do StatementSequence end.

Examples

var i, k, idNumber: integer;
…
while i # 3 do writeln('Hello'); i := i + 1 end

read(idNumber);
while ~Valid(idNumber) do
 write('Type ID number again ');
 read(idNumber)
end;
(* Valid(idNumber) *)

while i > 0 do i := i div 2; k := k + 1 end

while (t # nil) & (t.key # i) do t := t.left end

7.6 The repeat Statement

A repeat statement specifies the repeated execution of a statement sequence until a condition specified
by an expression of type boolean is satisfied. The statement sequence is executed at least once.

RepeatStatement = repeat StatementSequence until Expression.

Examples:

var idNumber: integer;

repeat
 write ('Type ID number '); read(idNumber)
until Valid(idNumber);
…

var i, x: integer; buffer: array 10 of integer;
…
i := 0;
(* convert non-negative value of x to decimal representation *)
repeat buffer[i] := x mod 10; x := x div 10; inc(i) until x = 0;

(* write out digit characters in correct order *)
repeat dec(i); write(char(buffer[i] + integer("0"))) until i = 0

Zonnon Language Report: Draft v02 r02 Printed on 2004-11-01 20

7.7 The for Statement

A for statement specifies the repeated execution of a statement sequence for a fixed number of times
while a progression of values is assigned to a variable of integer or cardinal type called the control
variable of the for statement.

ForStatement = for ident ":=" Ex pression to Expression [by ConstExpression] do StatementSequence end.

Example:

var i : integer;
…
for i := 0 to 79 do k := k + a[i] end
for i := 79 to 1 by -1 do a[i] := a[i-1] end

The statement

for v := low to high by step do statements end

is equivalent to

v := low; temp := high;
if step > 0 then
 while v <= temp do statements; v := v + step end
else
 while v >= temp do statements; v := v + step end
end

The value of the expression low must be assignment compatible with v and that of high must be
expression compatible with v. The value of step must be a non-zero constant expression of an integer or
cardinal type. If by step is omitted, then step defaults to the value 1.

7.8 The loop Statement

A loop statement specifies the repeated execution of a statement sequence. It is terminated upon
execution of an exit statement within that sequence.

LoopStatement = loop StatementSequence end.

Example:

loop (* copy integers from input to output until 0 is typed *)
 read(i);
 if i < 0 then exit end;
 write(i)
end

loop statements are useful for expressing repetitions with several exit points or cases where the exit
condition occurs naturally in the middle of the repeated statement sequence.

An exit statement is denoted by the symbol exit. It specifies termination of the enclosing loop
statement and continuation with the statement following that loop statement. An exit statement is
contextually, although not syntactically, associated with the loop statement which contains it.

7.9 The return Statement

A return statement indicates the termination of a procedure. It is denoted by the symbol return ,
followed by an expression if the procedure is a function procedure. The type of the expression must be
assignment compatible (see 13.4) with the result type specified in the procedure.

Function procedures require the presence of a return statement indicating the result value. In proper
procedures, a return statement is implied by the end of the procedure body. Any explicit return
statement therefore appears as an additional (probably exceptional) termination point.

7.10 The Block and launch Statements

The block statement allows the grouping together of logically related statements and the introduction of
exception handlers. Block statements can be nested.

BlockStatement = begin [BlockModifiers]
 StatementSequence
 { ExceptionHandler }
 [CommonExceptionHandler]
 end.
BlockModifiers = "{" ident { "," ident } "}".// locked, concurrent

Zonnon Language Report: Draft v02 r02 Printed on 2004-11-01 21

ExceptionHandler = on ExceptionName { "," ExceptionName } do StatementSequence.
CommonExceptionHandler = on exception do StatementSequence.

The statement sequence within the block is carried out.

7.10.1 Exception handling

If an exception occurs then the exception handlers are tried in the order in which they appear textually
until one that matches the exception is found or the general exception is reached. The statement
sequence corresponding to the exception name is then carried out.

Exception names take the form of predefined identifiers and include:
• ZeroDivision: division by zero
• Overflow : value does not lie within min(type) .. max(type)
• OutOfRange: array index out of bounds
• NilReference: uninitialized array/object/activity/dialog instance
• UnmatchedCase: control flow reached missing else in case statement
• Conversion: invalid type conversion (not guarded by ‘t is type’)
• Read: wrongly formatted input value for read or readln

 (See also [Compiler]).

Example:

var idNumber: integer; idValid: boolean;
begin
 read(idNumber);
 if Valid(idNumber) then idValid := true; Process(idNumber)
 else idValid := false (* wrong number *)
 end
on exception do
 idValid := false (* wrong sort of characters typed*)
end

7.10.2 Concurrency Modifiers and the launch Statement

A block may optionally have a modifier. The following modifiers are defined:

• locked: only a single activity is allowed within the scope of this block. It is used to enforce
mutual exclusion in for protected access to variables in concurrent programs. The statements
within the block are executed sequentially.

• concurrent: the individual statements in the block may be executed concurrently by one or
more processors in any order. However if a statement is prefixed by the keyword launch then
it becomes a launch statement. This provides a way to define the order in which concurrent
statements are started. The block terminates simultaneously when the last statement has
completed execution.

In both cases the begin and end delimiters act as a barrier.

Example:

begin {locked}
 … (*statements in the block are executed sequentially but atomically as a unit*)
end

Example:

begin {concurrent}...launch S; T; launch U; ... end

The effect of this is to launch S, then execute T, then launch U and wait at end for all launched
statements to terminate. This provides an innovative statement level concurrency that allows
programmers to specify the ‘launch logic’ without requiring the statements to be executed in sequence.

7.11 The await Statement

The await statement is used for conditional scheduling within an activity in an object or module [AOS].

await Expression

Zonnon Language Report: Draft v02 r02 Printed on 2004-11-01 22

It must occur within a block statement which has a locked modifier. The expression defines the
precondition of continuation of execution.

When it is executed the Boolean expression is evaluated and if it is true then execution continues at
the next statement. However, if it is false then execution is suspended until the system scheduler
subsequently re-evaluates the condition (possibly on more than one occasion) and finds that it has
become true. When this occurs execution continues at the next statement.

Example: object Buffer

This example shows how a first-in -first-out buffer can be implemented using an object. The producer,
which ‘puts’ the data, is assumed to belong to a different activ ity to the consumer, which ‘gets’ it. The
await statements regulate the content of the buffer. The locked modifiers ensure mutual exclusion of
access to the shared buffers whenever they are being altered, to conserve their integrity.

object Buffer;
(* First-in first-out buffer ('thread safe') *)
 const bufLen = 1000;
 var data: array bufLen of integer;
 in, out: integer;

 procedure {public} Put (i: integer); (* put element into the buffer *)
 begin {locked}
 await (in + 1) mod bufLen # out; (*wait until not full *)
 data[in] := i;
 in := (in + 1) mod bufLen
 end Put;

 procedure {public} Get (var i: integer); (* get element from the buffer *)
 begin {locked}
 await in # out; (* wait until not empty *)
 i := data[out];
 out := (out + 1) mod bufLen
 end Get;

begin
 in := 0; out := 0;
end Buffer;

7.12 The send Statement

The send statement is used within the implementation of an activity (see section 10) to output a value
to a dialog established between two activities. The send is non-blocking, that is execution of the
statement following the send statement continues immediately after the send statement has been
started.

Send = send expression ["=>" activity].

Examples:

send pi*x/180.0 => a (* Convert degrees to radians and send the result to callee activity 'a' *)
send "29 August 2003" (* Send the date string back to the caller activity *)

7.13 The receive Statement

The receive statement is used within the implementation of an activity (see section 10) to receive a
value from the dialog. Execution is blocked until a value has become available to be received.

Receive = receive [activity "=>"] variable.

Examples:

receive a => date (* Receive the date string from callee activity 'a' *)
receive angle (* Receive the angle value from the caller activity 'a' *)

7.14 The accept Statement

The accept statement is used within the implementation of an activity (see section 10) to accept a value
from the dialog. The accept is non-blocking, that is it returns a value if one is immediately available
and otherwise returns nil. In any case, execution immediately continues with the statement that follows
the accept statement.

Accept = accept [activity "=>"] variable.

Zonnon Language Report: Draft v02 r02 Printed on 2004-11-01 23

Examples:

accept a => date (* Accept the date string from callee activity 'a',
 or nil if none is immediately available *)

accept angle (* Accept the angle value from the caller activity 'a' *)

8 Procedure (and Method) Declarations and Formal Parameters

A procedure declaration consists of a procedure heading and a procedure body. The heading specifies
the procedure’s identifier and its formal parameters, if any. The body contains declarations and
statements. The procedure identifier is repeated at the end of the procedure declaration. A procedure
declared within an object is called a method.

There are two kinds of procedures: proper procedures and function procedures. The latter are
activated by a function designator as a constituent of an expression and yield a result that is an operand
of the expression. Proper procedures are activated by a procedure call. A procedure is a function
procedure if its formal parameters specify a result type. The body of a function procedure must contain
a return statement that defines its result.

All constants, variables, types, and procedures declared within a procedure body are local to the
procedure. Since procedures may be declared as local items too, procedure declarations may be nested
(subject to implementation restrictions). The call of a procedure within its declaration implies recursive
activation.

In addition to its formal parameters and locally declared items, the items declared in the
environment of the procedure are also visible in the procedure (with the exception of those items that
have the same name as an item declared locally).

ProcedureDeclaration = ProcedureHeading [ImplementationClause] ";" [ProcedureBody ";"].
ProcedureHeading = procedure [ProcModifiers] ProcedureName [FormalParameters].
ProcModifiers = "{" ident { "," ident } "}". // private, public, sealed
ProcedureBody = Declarations BlockStatement SimpleName.
FormalParameters = "(" [FPSection { ";" FPSection }] ")" [":" FormalType].
FPSection = [var] ident { "," ident } ":" FormalType.

Formal parameters are identifiers declared in the formal parameter list of a procedure. They correspond
to actual parameters specified in the procedure call. The correspondence between formal and actual
parameters is established when the procedure is called. There are two kinds of parameters, value and
variable parameters, indicated in the formal parameter list by the absence or presence of the keyword
var. Value parameters are local variables to which the value of the corresponding actual parameter is
assigned as an initial value. Variable parameters correspond to actual parameters that are variables, and
they stand for these variables. The scope of a formal parameter extends from its declaration to the end
of the procedure block in which it is declared. A function procedure without parameters must have an
empty parameter list. It must be called by a function designator whose actual parameter list is empty
too.

The rules for the correspondence between formal and actual parameters are as follows. Let Tf be the
type of a formal parameter f (not an open array) and Ta the type of the corresponding actual parameter
a. For variable parameters, Ta must be the same as Tf, or Tf must be an object type and Ta must be
derived from Tf. For value parameters, a must be assignment compatible with f. (See 13.4).

If Tf is an open array, then a must be array compatible with f. (See 13.5). The lengths of f are taken
from a.

8.1 Procedure Modifiers

A modifier may optionally occur after the reserved word procedure to denote its nature. The following
modifiers are defined:

• private: the procedure is only visible in the scope in which it is declared; this is the default.

• public: the procedure is visible in the scope in which it is declared and within any construct
that imports the construct in which it is declared.

• sealed: the procedure may not be further redefined (overridden),
 the inverse of being sealed is referred to as being open

Examples:

procedure ReadInt(var x: integer);
 var i: integer; ch: char;

Zonnon Language Report: Draft v02 r02 Printed on 2004-11-01 24

begin
 i := 0; read(ch);
 while ("0" <= ch) & (ch <= "9") do
 i := 10*i + (integer(ch) - integer("0")); read(ch)
 end;
 x := i
end ReadInt;

procedure {private} WriteHex(x: integer);
(* precondition: 0 <= x <100000H *)
 var i: integer; buf: array 5 of integer;
begin
 i := 0;
 repeat buf[i] := x mod 10H; x := x div 10H; inc(i) until x = 0;
 repeat dec(i);
 if buf[i] < 10 then write(char(buf[i] + integer("0")))
 else write(char(buf[i] – 10 + integer("A")))
 end
 until i = 0
end WriteHex;

procedure log2(x: integer): integer;
(* precondition: x > 0 *)
 var y: integer;
begin
 y := 0;
 while x > 1 do x := x div 2; inc(y) end;
 return y
end log2;

8.2 Properties

A property is a variable for which accessor procedures are provided by the programmer and
automatically called whenever its value is read or written. Whenever the value of the variable is
accessed in an expression a function marked with the modifier get is called and whenever the value of
the variable is set by an assignment, the procedure marked with the modifier set is called. A variable
for which only a getter function is provided is ‘read only’. A variable for which only a setter is
provided is ‘write only’.

definition D;
 var x: T;

end D.

object O implements D;
 procedure {get} Getx (): T implements D.x;
 (* 'getter': called automatically whenever x is accessed *)
 begin
 …
 return (…)
 end x;

 procedure {set} Setx (expression: T) implements D.x;
 (* 'setter': called automatically whenever x is assigned the value of the expression *)
 begin
 …
 end x;
end O.

Zonnon Language Report: Draft v02 r02 Printed on 2004-11-01 25

9 Predefined Procedures

The following table lists the predefined procedures. Some are generic procedures, i.e. they apply to
several types of operands. Within the specifications v stands for a variable, x and n for expressions, and
T for a type. The names of the predefined procedures can also be written entirely in upper-case letters.

Name Argument(s) type(s) Result type Purpose
abs(x) integer, cardinal or real type of x absolute value of x
assert(b) b: boolean none if ~b terminate
assert(b, n) b: boolean;

n: integer or cardinal
none if ~b terminate, report n to environment

cap(x) x: char char corresponding capital letter
precondition: x is a letter

copy(x, v) x: string; v: character array none v := x
copy(v, x) x: string; v: character array none x := v
copyvalue(v) v: ref object value object dereference an object
dec(v) v: integer, cardinal or

enumeration type
none v := v - 1

dec(v, n) v: integer, cardinal or
enumeration type

n: integer or cardinal type

none v := v - n

excl(v, x) v: set;
x: integer or cardinal type

none v := v - {x}

halt(n) n: integer or cardinal const none terminate program execution
inc(v) v: integer, cardinal or

enumeration
none v := v + 1

inc(v, n) v: integer, cardinal or
enumeration

n: integer or cardinal type

none v := v + n

incl(v, x) v: set;
x: integer or cardinal type

none v := v + {x}

len(v, n) v:array;
n: integer or cardinal const

integer length of v in dimension n
(first dimension = 0)

len(v) v:array integer equivalent to len(v, 0)
low(x) x:char char corresponding lower-case letter

precondition: x is a letter
max(T) integer integer maximum value of type integer{w}
max(T) cardinal cardinal maximum value of type cardinal{w}
max(T) enumeration enumeration maximum value of the enumeration
max(T) char{w} integer maximum character
max(T) real{w} real maximum value of type real{w}
max(T) set{w} integer maximum element of a set{w}
min(T) integer integer mininmum value of type integer{w}
min(T) enumeration enumeration minimum value of the enumeration
min(T) char{w} integer minimum character
min(T) real{w} real minimum value of type real{w}
min(T) set{w} integer 0
odd(x) x: integer boolean x mod 2 = 1
pred(x) x: integer integer x – 1, pre: x # min(integer)
pred(x) x: enumeration type of x predecessor enumeration value,

pre: x # min(enumeration)
pred(x) x: char char predecessor char, pre: x # min(char)
size(T) any type integer number of bytes required by T
succ(x) x: integer or cardinal integer x + 1, pre: x # max(integer)
succ(x) x: enumeration type of x successor enumeration value,

pre: x # max(enumeration)
succ(x) x: char char successor char, pre: x not max(char)

In assert(x, n) and halt(n), the interpretation of n is implementation specific. (See [Compiler]).

For predefined input-output procedures see section 10.5.

10 Activities, Behavior and Interaction

The declaration of an activity is similar to that of a method (procedure) with the omission of a
parameter list. The reserved word activity is used to differentiate an activity declaration from that of a
method. Activities may also have the private or public modifiers to control their visibility. Once an
activity has been declared then instances of it can be created in any active object or module.

Zonnon Language Report: Draft v02 r02 Printed on 2004-11-01 26

Semantically, the difference between an activity and a method is more substantial. Activities are
declared and then instantiated (launched) rather than called, and a new activity is implicitly spawned
with each launch.

The operator new is used to create each instance of an activity.

10.1 Behavior

Activities provide a means of encapsulating behavior added to an object or module (regarded as a
singleton object). An object may contain an arbitrary number of activities, or none at all in which case
it is a passive object. Typically behavioral activities are private to the object (or module) that contains
them and are created and launched by the constructor.

Example:

object Cell (*of a pipeline*);
 type Job = …;

 var in, out, n: integer;
 buf: array N of Job;

 procedure Get (j: Job);
 begin …
 end Get;

 procedure { public } Put (j: Job);
 begin …
 end Put;

 activity Process;
 var … (*state space of the activity*)
 begin …
 end Process;

 var p: Process;

begin
 n := 0; in := 0; out := 0;
 p := new Process (* Create activity in Cell *)
end Cell;

10.2 Interaction

A formal syntax specification can be associated with activities for object interaction. In order to start
interaction a caller first creates an activity in the callee object which implicitly opens a dialog with it
that then commences between the caller and the callee defined by the formal dialog syntax of the
callee’s activity. It is noteworthy that the interaction between the caller and callee activities is
asymmetrical. The caller knows the callee by its name, whereas the callee is unaware of the name of its
caller, the only association between them being the dialog.

The actual exchange of syntactic tokens between caller and callee is controlled by the send and
receive operations described in sections 0 and 7.13, where receive takes a generic object argument. If
necessary, the is operator can then be used to discriminate between the different types of syntactic
tokens (see 6.2.4).

10.3 Protocol EBNF

The definition of an activity can include a dialog that is a formal syntax specification of a
communication protocol in EBNF. It is represented as a modifier to an enumeration type which defines
the alphabet of terminal tokens of the syntax. The name of an activity and its enumeration type
constitute the activity’s signature. Note that in EBNF protocol specifications the communication of an
item from the callee to the caller is prefixed by a ‘?’.

definition Fighter;
 activity (* Syntax of the protocol, in this case it is recursive too *)
 { fight = { attack ({ defense attack } | RUNAWAY [?CHASE] | KO | fight) }.
 attack = ATTACK strike.
 defense = DEFENSE strike.
 strike = bodypart [strength].
 bodypart = LEG | NECK | HEAD.
 strength = integer. }
 Karate = (RUNAWAY, CHASE, KO, ATTACK, DEFENSE, LEG, NECK, HEAD);

Zonnon Language Report: Draft v02 r02 Printed on 2004-11-01 27

end Fighter.

object Opponent implements Fighter;
 activity Karate implements Fighter.Karate;
 var t: object;

 procedure fight;
 begin
 while t is ATTACK do
 receive t;
 while t is DEFENSE do receive t; strike
 if t is ATTACK then strike else halt(protocolError) end
 end;
 if t is RUNAWAY then
 if (*not exhausted*) then send Karate.CHASE end;
 return (* fight over *)
 elsif t is KO then return (* fight over *)
 elsif t is ATTACK then fight (* recursion, continue the fight *)
 else halt(protocolError)
 end
 end
 end fight;

 procedure strike;
 begin (* note use of type tests as guards*)
 if (t is LEG) or (t is NECK) or (t is HEAD)
 then
 receive t; (* bodypart*)
 if t is integer then receive t end (* optional strength parameter*)
 end
 end strike;

 begin (* Karate*)
 receive t;
 fight
 end Karate;
end Opponent.

object Challenger;
 import Opponent, Fighter;
 var opp: Opponent; f: Fighter.Karate;
 opp := new Opponent; (* create opponent *) …
 f := new opp.Fighter.Karate; (* create dialog *)
 send Fighter.Karate.ATTACK => f; … (* fight according to the dialog protocol *)
 …
end Challenger.

10.4 Termination

An object may only terminate when there are no longer any references to it, and when all of its
activities have terminated. An activity terminates after the execution of the statement immediately
preceding the end of its procedure’s body.

10.5 Input and Output Procedures

The language includes built-in features for simple textual input and output. Conceptually, reading and
writing corresponds to receiving and sending tokens from and to the predefined activities standard
input and standard output respectively.

For convenience, predefined procedures in a similar style to Pascal are provided for reading and
writing text. The procedures for inputting text are read and readln and for outputting are write and
writeln. All input and output is to texts which are implicitly assumed to be represented as lines of
characters delimited by end of line markers.

10.5.1 Parameters and special syntax

The procedures are used with a non-standard syntax for their parameter lists. This allows for a variable
number of parameters which may be of various data types. Parameters of type char require no data type
conversion, however for other types such as integer, real, etc the data transfer includes an implicit data
type conversion.

Zonnon Language Report: Draft v02 r02 Printed on 2004-11-01 28

10.5.2 Input Procedures

10.5.2.1 The read procedure

The form of the read procedure is

read (v1, …, vn)

It may have one or more parameters, each of which is a value of some basic data type. If v is a value of
type char then read(v) transfers the next character from the input text to v. If v is a value of type
integer, cardinal or real then read(v) implies the reading of a sequence of characters from the input
text and assignment of that number to v. Preceding blanks and line markers are skipped and discarded.

10.5.2.2 The readln procedure

The form of the readln procedure is

readln(v1, …, vn)

readln has the same functionality as read except that after reading vn all remaining characters on the
line are skipped up to and including the next end of line marker.

10.5.3 Output Procedures

10.5.3.1 The write procedure

The form of the write procedure is

write (p1, …, pn)

It may have one or more parameters, each of which has the form

e : e:m or e:m:n

Where e represents the value to be output and m and n are field-width specifiers. If the value of e
requires less than m characters for its representation then blanks (spaces) are output to ensure that a
total of exactly m characters are written. If m is omitted an implementation-defined default value will
be assumed. The form e:m:n is only applicable to numbers of type real. (See below).

The write procedure parameters can be of type char, string, boolean, integer, cardinal and real.
• If e is of type char then write (e : m) writes out m - 1 spaces followed by the character

contained in e. If m is omitted then only the character is written.
• If e is of type string then write (e : m) writes the characters of the string, preceded by blanks to

ensure a total field width of m.
• If e is of type boolean then either the word true or false is written, preceded by blanks to

ensure a total field width of m.
• If e is of type integer or cardinal then the decimal representation of the number e will be

written, preceded by blanks to ensure a total width of m.
• If e is of type real then the decimal representation of the number e will be written, preceded

by blanks to ensure a total width of m. If the parameter n is missing a floating point
representation consisting of a coefficient and a scale factor will be written. If n is present then
a fixed-point representation with n digits after the decimal point is provided.

10.5.3.2 The writeln procedure

The form of the writeln procedure is:

writeln (v1, …, vn)

writeln has the same functionality as write except that after writing vn an end of l ine marker is written.

10.5.3.3 Default values of widths in write and writeln

The default field width for write and writeln procedure parameters depends on the type of the
parameter, the default widths are:

• char default field width 1
• string default field width is 4
• boolean default field width is 6

Zonnon Language Report: Draft v02 r02 Printed on 2004-11-01 29

• integer default field width is 20
• cardinal default field width is 20
• real default field width is 20

11 Program Units

A Zonnon program may be textually partitioned into units, each of which can be compiled separately.
It is also possible to textually nest some of these units. The rules governing this are in section Error!
Reference source not found. .

11.1 The module

A module has a dual nature, it declares a syntactic container for logically cohesive program
declarations and it simultaneously declares an object whose lifecycle is controlled by the system. So
the module provides the mechanism for the textual partitioning of a source program and also the
dynamic loading at execution time of a part of a program, in the form of an instantiated object.

Any number of dynamically created objects may have their lifecycles managed by a program,
however only a single instance of each module’s object may be instantiated by the system at any given
time. For this reason the module is also ideal for implementing abstract data types.

Module = module [ModuleModifier] ModuleName [ImplementationClause] ";"
 [ImportDeclaration]
 ModuleDeclarations
 (BlockStatement | end) SimpleName.
ModuleModifier = "{" ident "}" // private or public.
ModuleDeclarations = { SimpleDeclaration | NestedUnit ";" }
 { ProcedureDeclaration | OperatorDeclaration }
 { ActivityDeclaration }.
NestedUnit = (Definition | Implementation | Object).

ImplementationClause = implements DefinitionName { "," DefinitionName }.

ImportDeclaration = import Import { "," Import } ";".
Import = ImportedName [as ident].
ImportedName = (ModuleName | DefinitionName | ImplementationName | NamespaceName |
 ObjectName).

Each module has a unique name and constitutes a text that may be separately compiled as a unit.
Optionally a module may implement one or more definitions. (See section 2). In this case the distinct
facets of the object are defined separately in definition units which provide an abstract interface. A
module may optionally import elements from one or more other implementations, that is, gain access to
their scope and make possible the aggregation of their content. By using the as clause it is also possible
to rename all entities as they are imported. This can be used to avoid name clashes and/or to simplify
long external names to promote program readability.

Example:

import System.Console as S;
…
S.WriteLine('Hello'); (* equivalent to System.Console.WriteLine('Hello') *)

A module may optionally contain

• Other textual units i.e. definitions, implementations and objects

• Simple declarations of constants, types, variables, and procedures

• Operator declarations, for defining user defined operators

• Activity declarations, for defining activities within the module on instantiation

Examples:

module Small;
begin
 write ('Hello World')
end Small.

module BodyMassIndex;
(* calculate body mass index *)
 var height, weight, bmi: real;

Zonnon Language Report: Draft v02 r02 Printed on 2004-11-01 30

begin
 write('weight in kg? '); read(weight);
 write('height in m? '); read(height);
 bmi := weight / (height * height);
 write(' body mass index is', bmi : 6: 2);
 if bmi < 19 then
 write('too thin')
 elsif bmi < 27 then
 write('OK')
 else
 write('too fat')
 end
end BodyMassIndex.

definition D; …end D.

definition E; …end E.

module M;
import D, E;
 var a: object{D, E}; (* object is one that implements both D and E *)
 …
end M.

11.2 The object as a unit of program composition

Optionally an object may implement one or more definitions. In this case the distinct facets of the
object are defined separately in definition units which provide an abstract interface. Also an object may
import elements from a module or implementation ; that is, gain access to their scope. By using the as
clause it is also possible to rename all entities as they are imported. This can be used to avoid name
clashes and/or to simplify long external names to promote readability of the programming within the
object.

Note that an object importing a definition D to make use of the implementation D must explicitly
aggregate it by importing D, see sections 11.3 and 11.4.

11.2.1 Inheritance: refinement and aggregation

There are two kinds of inheritance supported in Zonnon: refinement and aggregation. Refinement is the
inheritance of an interface definition whilst aggregation is the inheritance (reuse) of (fragments of) an
existing implementation. All object declarations that do not explicitly refine some other object are
deemed to refine object. Thus all objects (directly or indirectly) refine object. If an object B refines an
object A, then B is said to be ‘derived from’ A.

11.2.2 Multiple Inheritance

Multiple inheritance is characterized by the possibility to refine from multiple definitions and/or to
aggregate from multiple implementations. In Zonnon there is no ambiguity associated with multiple
inheritance, due to the use of qualified identifiers for naming (see 5.1).

11.2.3 Polymorphism

Polymorphism involves the selection of the appropriate method to invoke at execution time, depending
on the type of the variable that it is to be acted upon. There are two concepts:

1) an object of type T is required here, and

2) an object is required here that implements an interface definition D

Zonnon emphasizes the second more general concept (2 above) and goes further by allowing the
specification of multiple definitions (so called ‘facets’ of the object’s overall interface) and so in this
context polymorphism means ‘an object is required here that implements D1 and D2 and …’.

11.3 The definition

A definition defines a distinct facet of an object in terms of an abstract interface comprising field
declarations and method signatures (but not method bodies). Definitions can form a network of related
types, not just a hierarchy. The dependencies between definitions may not be cyclic.

Zonnon Language Report: Draft v02 r02 Printed on 2004-11-01 31

Definition = definition [DefinitionModifier] DefinitionName [RefinementClause] ";"
 [ImportDeclaration]
 DefinitionDeclarations
 end SimpleName.
DefinitionModifier = "{" ident "}" // private or public

RefinementClause = refines DefinitionName.

ImportDeclaration = import Import { "," Import } ";".
Import = ImportedName [as ident].
ImportedName = (ModuleName | ImplementationName | NamespaceName |
 DefinitionName| ObjectName).

DefinitionDeclarations = { SimpleDeclaration } { { ProcedureHeading ";" } | ActivitySignature }.

A definition has a unique name and optionally refines another definition, presenting a new facet of an
object, possibly adding new fields and behavior and thus forming a specialized form of the original
definition.

It may also optionally import elements from one or more implementations, that is gain access to
their scope and make possible the literal aggregation of their content. By using the as clause it is also
possible to rename all entities as they are imported. This can be used to avoid name clashes and/or to
simplify long external names to promote readability of the programming within the object. The
modifiers public and private can be used to declare the visibility of the contents of a definition. If no
modifier is present then the default is public. The definition can contain a set of declarations of
constant, types and variables and also method procedure headings (signatures), but not the bodies of
procedures.

Examples:

definition Graphical;
(* features of all graphical objects *)
 var x, y: integer; (* object’s position *)

 procedure MoveTo (newX, newY: integer);
 (* post: (x = newX) & (y = newY) *)

 procedure MoveBy (dx, dy: integer);

 procedure Draw;
end Graphical.

definition Rectangle refines Graphical;
(* features specific to rectangle objects *)
 var width, height: integer;

 procedure Area (): integer;
end Rectangle.

implementation Graphical;
(* see example in section 11.4 *)
 …
end Graphical.

object {ref} Box implements Rectangle;
 procedure Area (): integer;
 begin
 return width * height
 end Area;
end Box.

11.4 The implementation

An implementation defines an aggregate of field and method implementation fragments intended for re-
use when incorporated into a program via one or more object templates. An implementation has a
unique name unless it has the same name as its corresponding definition . It may optionally import
elements from one or more other implementations, that is, gain access to their scope and make possible
the aggregation of their content. By using the as clause it is also possible to rename all entities as they
are imported. This can be used to avoid name clashes and/or to simplify long external names to
promote readability of the programming within the object. The modifiers public and private can be
used to declare the visibility of the contents of an implementation. If no modifier is present then the
default is public.

Zonnon Language Report: Draft v02 r02 Printed on 2004-11-01 32

An object implementing a definition is required to implement all of its methods unless the definition
has a corresponding implementation which is imported to the object.

Implementation = implementation [ImplementationModifier] ImplementationName ";"
 [ImportDeclaration]
 Declarations
 (BlockStatement | end) SimpleName.
ImplementationModifier = "{" ident "}". //private or public
ImportDeclaration = import Import { "," Import } ";".
Import = ImportedName [as ident].
ImportedName = (ModuleNa me | ImplementationName | NamespaceName |
 DefinitionName | ObjectName).

The implementation can contain a set of declarations of constants, types and variables and also method
procedure headings and bodies. These bodies ultimately form the concrete implementations of the
methods of objects.

Examples:

implementation Graphical; (* an implementation of the definitionGraphical *)
 (* X and Y are declared in the definition*)
 procedure MoveTo (newX, newY: integer);
 begin
 x := newX; y := newY
 end MoveTo;

 procedure MoveBy (dx, dy: integer);
 begin
 x := x + dx; y := y + dy
 end MoveBy;

end Graphical.

12 Reflection

It is sometimes desirable to access information about the constructs and their attributes (e.g. modifiers)
of a Zonnon source program. To make this possible the compiler can produce an XML definition of the
salient features of each separately compiled item of source text. This can later be accessed by a run-
time program using the predefined procedure getAttribute. The construct parameter is the name of any
Zonnon entity, including program units, types, constants, variables, objects, procedures, parameters,
blocks and operators.

The attribute values may be accessed using two forms of getAttribute:

getAttribute(construct, var string);

or

string := getAttribute (construct);

The information is returned in a single string, possibly containing several attribute values.

12.1 XML Schema

The following list defines the XML schema used to describe the information reflected from the
program:

12.1.1 Access rights

<access>public</access>

<access>private</access>

12.1.2 Objects

<object>ref</object>

<object>value</object>

Zonnon Language Report: Draft v02 r02 Printed on 2004-11-01 33

12.1.3 Procedure parameters (parameter passing mode):

<parameter>var</parameter>

<parameter>value</parameter>

12.1.4 Procedure and Variable immutability:

<immutable>open</immutable>

<immutable>sealed</immutable>

12.1.5 Operator priority

<priority>3</priority>

12.1.6 Blocks and Procedure bodies

<behaviour>passive</behaviour> //neither locked nor concurrent

<behaviour>locked</behaviour>

<behaviour>concurrent</behaviour>

12.1.7 Type, variable and constant widths

<width>64</width>

12.1.8 Enumeration cardinality

<ordinal>7</ordinal>

12.2 Example: program reflection and information
definition d;
 procedure p1 (var x: integer {32});
 procedure { sealed } p2;
 var v: integer {64};
 type T = (one, two, three);
end d.

object o implements d;
 procedure p1 (var x: integer {32}) implements d.p1;
 var attrs1, attrs2, attrs3, attrs4, attrs5, attrs6: string;
 begin { locked }
 attrs1 := getAttribute(d);
 attrs2 := getAttribute(d.v);
 attrs3 := getAttribute(p1.x);
 attrs4 := getAttribute(d.T);
 attrs5 := getAttribute(p1);
 attrs6 := getAttribute(d.p2);
 end p1;
begin
end o.

When this program runs it produces reveals its form via the reflection information as follows:

attrs1(d) contains:
 "<attributes> <access>public</access> </attributes>"

attrs2(d.v) contains:
"<attributes> <access>public</access> <implement>open</implement>
<width>64</width> </attributes>"

attrs3(p1.x) contains:
 "<attributes> <parameter>var</parameter> <width>32</width> </attributes>"

attrs4(d.T) contains:

 "<attributes> <access>public</access> <width>32</width> <ordinal>3</ordinal>
 </attributes>"

attrs5(p1) contains:
 "<attributes> <access>public</access> <implement>sealed</implement>
 <behaviour>locked</behaviour> </attributes>"

Zonnon Language Report: Draft v02 r02 Printed on 2004-11-01 34

attrs6(d.p2) contains:
 "<attributes> <access>public</access> <implement>sealed</implement>
 <behaviour>passive</behaviour> </attributes>"

13 Definition of Terminology

13.1 Numeric types

The numeric types are:

• Integer types integer or integer{width}

• Cardinal types cardinal or cardinal{width}

• Real types real or real{width}

13.2 Same types

Two variables a and b with types Ta and Tb are of the same type if

• Ta and Tb are both denoted by the same type identifier, or

• Ta is declared to equal Tb in a type declaration of the form Ta = Tb, or

• a and b appear in the same identifier list in a variable, object field, or formal parameter
declaration and are not open arrays.

13.3 Equal types

Two types Ta and Tb are equal if
• Ta and Tb are the same type, or
• Ta and Tb are open array types with equal element types, or
• Ta and Tb are procedure types whose formal parameter lists match.

13.4 Assignment compatible

An expression e of type Te is assignment compatible with a variable v of type Tv if one of the
following conditions hold:

• Te and Tv are the same type;
• Within each of the type families

integer, cardinal, real, set, char
an expression of type Te may be assigned to a variable v whose type Tv is large enough
(defined by its width) to hold the set of values of type Te;

• Tv is a procedure type and e is nil;
• Tv is a procedure type and e is the name of a procedure whose formal parameters match

the signature of Tv

13.5 Array compatible

An actual parameter a of type Ta is array compatible with a formal parameter f of type Tf if
• Tf and Ta are the same type, or
• Tf is an open array, Ta is any array, and their element types are array compatible

13.6 Expression compatible and Operator Overloading

For a given operator, the types of its operands are expression compatible if they conform to the
following table (which shows also the result type of the expression), for example: op1 > op2. The table
also implicitly defines the sets of operand combinations that are supported for operator overloading.

Operator First operand (op1) Second operand (op2) Result type

+ - * integer{m} integer{n} max of integer{m} and integer{n}

+ - * cardinal{m} cardinal{n} max of cardinal{m} and
cardinal{n}

+ - * real{m} real{n} max of real{m} and real{n}

Zonnon Language Report: Draft v02 r02 Printed on 2004-11-01 35

/ real{m} real{n}
pre: op2 # 0

max of real{m} and real{n}

+ - * set{m} set{n} max of set{m} and set{n}

div mod integer{m} integer{n}
pre: op2 # 0

max of integer{m} and integer{n}

or & ~ boolean boolean boolean

= # < <= > >= integer{m} integer{n} boolean

= # < <= > >= cardinal{m} cardinal{n} boolean

= # < <= > >= real{m} real{n} boolean

= # < <= > >= enumeration T enumeration T boolean

= # < <= > >= char char boolean

= # < <= > >= character array, character array boolean

= # < <= > >= string string boolean

= # boolean boolean boolean

= # set set boolean

= # procedure type T procedure type T boolean

= # nil nil boolean

in integer set boolean

implements object definition boolean

is object object type boolean

13.7 Matching formal parameter lists

Two formal parameter lists match if
• they have the same number of parameters, and
• they have either the same function result type or none, and
• parameters at corresponding positions have equal types, and
• parameters at corresponding positions are both either value or variable parameters.

14 Syntax
// Zonnon Syntax in EBNF
// Version of 11th March 2004

// 1. Program and program units
CompilationUnit = { ProgramUnit "." }.
ProgramUnit = (Module | Definition | Implementation | Object).

// 2. Modules
Module = module [ModuleModifier] ModuleName [ImplementationClause] ";"
 [ImportDeclaration]
 ModuleDeclarations
 (BlockStatement | end) SimpleName.
ModuleModifier = "{" ident "}" // private or public (the default is private).
ModuleDeclarations = { SimpleDeclaration | NestedUnit ";" }
 { ProcedureDeclaration | OperatorDeclaration }
 { ActivityDeclaration }.
NestedUnit = (Definition | Implementation | Object).
ImplementationClause = implements DefinitionName { "," DefinitionName }.
ImportDeclaration = import Import { "," Import } ";".
Import = ImportedName [as ident].
ImportedName = (ModuleName | DefinitionName | ImplementationName | NamespaceName |
 ObjectName).

// 3. Definitions
Definition = definition [DefinitionModifier] DefinitionName [RefinementClause] ";"
 [ImportDeclaration]
 DefinitionDeclarations
 end SimpleName.
DefinitionModifier = "{" ident "}" // private or public; default is public
RefinementClause = refines DefinitionName.

Zonnon Language Report: Draft v02 r02 Printed on 2004-11-01 36

DefinitionDeclarations = { SimpleDeclaration } { { ProcedureHeading “;” }| ActivitySpecification }.
ActivitySpecification =
 activity "{" ProtocolEBNF "}" ActivityName "=" EnumType ";".
ProtocolEBNF = Specification of the protocol in EBNF based on the syntax alphabet.
 // see section 10.3

// 4. Implementations
Implementation = implementation [ImplementationModifier] ImplementationName ";"
 [ImportDeclaration]
 Declarations
 (BlockStatement | end) SimpleName.
ImplementationModifier = "{" ident "}". // private or public; default is public

// 5. Objects
Object = object [ObjModifier] ObjectName [FormalParameters] [ImplementationClause] ";"
 [ImportDeclaration]
 Declarations
 { ActivityDeclaration }
 (BlockStatement | end) SimpleName.
ObjModifier = "{" ident "}". // value or ref; value by default
 // private or public; private by default
ActivityDeclaration = activity ActivityName [ImplementationClause] ";"
 Declarations
 (BlockStatement | end SimpleName).

// 6. Declarations
Declarations = { SimpleDeclaration } { ProcedureDeclaration }.
SimpleDeclaration = (const [DeclModifier] { ConstantDeclaration ";" }
 | type [DeclModifier] { TypeDeclaration ";" }
 | var [DeclModifier] { VariableDeclaration ";" }
).
DeclModifier = "{" ident "}". // public or private or immutable
ConstantDeclaration = ident "=" ConstExpression.
ConstExpression = Expression.
TypeDeclaration = ident "=" Type.
VariableDeclaration = IdentList ":" Type.

// 7. Types
Type = (TypeName [Width] | EnumType | Array Type | ProcedureType | InterfaceType).
Width = "{" ConstExpression "}".
ArrayType = array Length { "," Length } of Type.
Length = (ConstExpression | "*").
EnumType = "(" IdentList ")".
ProcedureType = procedure [ProcedureTypeFormals].
ProcedureTypeFormals = "(" [PTFSection { ";" PTFSection }] ")" [":" FormalType].
PTFSection = [var] FormalType { "," FormalType }.
FormalType = { array "*" of } (TypeName | InterfaceType).
InterfaceType = object [PostulatedInterface].
PostulatedInterface = "{" DefinitionName { "," DefinitionName } "}".

// 8. Procedures & operators
ProcedureDeclaration = ProcedureHeading [ImplementationClause] ";" [ProcedureBody ";"].
ProcedureHeading = procedure [ProcModifiers] ProcedureName [FormalParameters].
ProcModifiers = "{" ident { "," ident } "}". // private, public, sealed
ProcedureBody = Declarations BlockStatement SimpleName.
FormalParameters = "(" [FPSection { ";" FPSection }] ")" [":" FormalType].
FPSection = [var] ident { "," ident } ":" FormalType.
OperatorDeclaration = operator [ProcModifiers] OpSymbol [FormalParameters] ";" OperatorBody ";".
OperatorBody = Declarations BlockStatement OpSymbol.
OpSymbol = string. // A 1,2-character string; the set of possible symbols is restricted

// 9. Statements
StatementSequence = Statement { ";" Statement }.

Zonnon Language Report: Draft v02 r02 Printed on 2004-11-01 37

Statement = [Assignment
 | ProcedureCall
 | IfStatement
 | CaseStatement
 | WhileStatement
 | RepeatStatement
 | LoopStatement
 | ForStatement
 | await Expression
 | exit
 | return [Expression]
 | BlockStatement
 | launch Statement
 | Send
 | BlockingReceive
 | NonBlockingReceive
].
Assignment = Designator ":=" Expression.
ProcedureCall = Designator.
IfStatement = if Expression then StatementSequence
 { elsif Expression then StatementSequence }
 [else StatementSequence]
 end.
CaseStatement = case Expression of
 Case { "|" Case }
 [else StatementSequence]
 end.
Case = [CaseLabel { "," CaseLabel } ":" StatementSequence].
CaseLabel = ConstExpression [".." ConstExpression].
WhileStatement = while Expression do StatementSequence end.
RepeatStatement = repeat StatementSequence until Expression.
LoopStatement = loop StatementSequence end.
ForStatement = for ident ":=" Expression to Expression [by ConstExpression]
 do StatementSequence end.
BlockStatement = begin [BlockModifiers]
 StatementSequence
 { ExceptionHandler }
 [CommonExceptionHandler]
 end.
BlockModifiers = "{" ident { "," ident } "}". // locked, concurrent
ExceptionHandler = on ExceptionName { "," ExceptionName } do StatementSequence.
CommonExceptionHandler = on exception do StatementSequence.
Send = send expression ["=>" activity].
BlockingReceive = receive [activity "=>"] variable.
NonBlockingReceive = accept [activity "=>"] variable.

// 10. Expressions
Expression = SimpleExpression
 [("=" | "#" | "<" | "<=" | ">" | ">=" | in) SimpleExpression]
 | Designator implements DefinitionName
 | Designator is TypeName.
SimpleExpression = ["+"|""] Term { ("+" | "" | or) Term }.
Term = Factor { ("*" | "/" | div | mod | "&") Factor }.
Factor = number
 | CharConstant
 | string
 | nil
 | Set
 | Designator
 | new TypeName ["(" ActualParameters ")"]
 | new ActivityInstanceName
 | "(" Expression ")"
 | "~" Factor.
Set = "{" [SetElement { "," SetElement }] "}".
SetElement = Expression [".." Expression].
Designator = Instance
 | Designator "{" Type “}” // Conversion
 | Designator "^" // Dereference
 | Designator "[" Expression { "," Expression } "]" // Array element
 | Designator "(" [ActualParameters] ")" // Function call
 | Designator "." MemberName // Member selector
Instance = (self | InstanceName | DefinitionName "(" InstanceName ")").
ActualParameters = Actual { "," Actual }.
Actual = Expression ["{" [var] FormalType "}"]. // Argument with type signature

Zonnon Language Report: Draft v02 r02 Printed on 2004-11-01 38

// 11. Constants

number = (whole | real) ["{" Width "}"].
whole = digit {digit} | digit {hexDigit} "H".
real = digit { digit } "." { digit } [ScaleFactor].
ScaleFactor = "E" ["+" | ""] digit { digit }.
HexDigit = digit | "A" | "B" | "C" | "D" | "E" | "F".
digit = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9".
CharConstant = '"' character '"' | "'" character "'" | digit { HexDigit } "X".
string = '"' { character } '"' | "'" { character } "'".
character = letter | digit | Other.
Other = // Any character from the alphabet except those that are in use…

// 12. Identifiers & names
ident = (letter | "_") { letter | digit | "_" }.
letter = "A" | ... | "Z" | "a" | ... | "z" | // any other "culturally-defined" letter
IdentList = ident { "," ident }.
QualIdent = { ident "." } ident.
DefinitionName = QualIdent.
ModuleName = QualIdent.
NamespaceName = QualIdent.
ImplementationName = QualIdent.
ObjectName = QualIdent.
TypeName = QualIdent.
ExceptionName = QualIdent.
InstanceName = QualIdent.
ActivityInstanceName = QualIdent.
ProcedureName = ident.
ActivityName = ident.
MemberName = (ident | OpSymbol).
SimpleName = ident.

15 References
The references are ordered alphabetically:

[AOS]
An Active Object System Design and Multiprocessor Implementation
Dr Pieter Muller
PhD Thesis 14755 ETH Zurich

[CLI] Standard ECMA-335:
Common Language Infrastructure (CLI), see section on Common Type System (CTS)
http://www.ecma.ch/ecma1/STAND/ecma-355.htm

[Compiler]
Zonnon Compiler Implementation Details, ETH Zürich, 2003
The first implementation of the compiler is for the Microsoft .NET Interoperability Platform

[Mesa]
Mesa Language Manual Version 5.0
J Mitchell, W Maybury, R Sweet
CSL-79-3 April 1979
XEROX Palo Alto Research Centre, California, USA

[Modula-2]
Programming in Modula-2
N Wirth
Springer Verlag 1982, 1983, 1985
ISBN 0-540-15078-1, ISBN 0-387-15078-1

[Oberon]
Project Oberon: The Design of an Operating System and Compiler
N. Wirth and J. Gutknecht
ACM Press 1992, ISBN 0-201-54428-8

Zonnon Language Report: Draft v02 r02 Printed on 2004-11-01 39

[Pascal]
PASCAL – User Manual and Report, ISO Pascal Standard
Kathleen Jensen and Niklaus Wirth
Springer Verlag 1974, 1985, 1991
ISBN 0-387-97649-3, ISBN 0-540-97649-3

[Zonnon]
Zonnon for .NET: A Language and Compiler Experiment
J. Gutknecht and E. Zueff
LNCS 2789, Springer Verlag 2003, ISBN 3-540-40796-0

