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F1 Introduction

The development of the compurcr architecture and network techlologies' together

with investigadons ot new ttme-consuming scientific and applied problems that

demand massive computatrons ,no*"Jtr-igr, 
"n"""a..ity of parallel computations. made

ilil;;;;;;;;; &puting the 
"otn"'""on" 

or programming and computationar

tt"[1ltl3];n" 

", 
,"ience needs and.the actuality of parallel computations' so far they

are not as widely used as it was predicted One tf thl possible reasons is the necessity

Hil"il;;";-p"*tiet atglrithms to solYe the new computationally intensrve

problems. It is well-known 'not 
-itt" 

'p""oup of solving the task on parallel

iomoutational system can onty u" oJi"u"i when the agorithm is divided into set of

independent processes that cun ue iun 'i-uttaneously The other reason is that the

il"r,fi;;;f;;;;i;i code is a rrigh complexitv problem' which makes it necessarv to

fully understand the behavror ot the tvtiJt of 
"o*pututional 

processes run in parallel'

That is why comPetence tn *oo"'n'ttittt perforrnance. computational system design

rends, in new tools developed to achieie iaratlaism'th: tb11::T,::^^t:Tt" models and

rJ"a,'i", ,"r"i'g ttre nroulems in nar-Jl:t"ililf;;,fl".r;Jrgllties.for specialists in

applied mathematics, computer scre
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2 Working with Paralab

While working with Paralab the user has an access to a wide range of tools to set the
computational experiment parameters. She can model the cornputational system,
chose the problem, caffy out the parallel algorithm, collect and anilyze the results of
compulalional experimcn(s.

2.1 Modeling the Parallel Computational System

Palalab allows to simulate the parallel conputational experiments execution on
multiprocessor (SMP) and nulticore atchitectures. The computational sysrem appears
to consist of the computational nodes (contputers). Each node has one or more
processors, and each processor has one or mote cores. The paral-ab systern
architecture docsn't limit the maximuln amount of cores in processor ano proccssors
in one node, but for the sake of visualization we limit the number of cores to be equal
to l, 2 or 4 and number of processors to be I or 2.

In order to simulate the computer system, it is necessary to determine the network
topology, the number of conrputational nodes, the number of processors and cores in
one node, the performance of each core, and the characteristics of the cornmunication
network (the latency, the bandwidth and the data communication method). It should
be noted that the computer systenr is assumed to be homogeneous in the paraLab
system, i.e. all the conputational nodes have the equal amount of processors, every
plocessor coilists of the same number of cores, cor.es possess equal perforrnance, and
all the communication l ines have the same characteristics.
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Fig. 1. Dialog windows to set up thc computational system parameters

The data communication net\ lork topologl is defined by the structure of
communication lines among the computer system processors, The system paralab
supports the following network topologies: farm, ring, star, grid, hypercube, full
graph (clique).



The Paralab System tbr Investigating the Parallel Algorithms 9'l

The system Paralab allows user to set the desirable number of nodes for the
selected topology. The choice of the system configuration is performed in accordance
wirh rhe type of the topology used.

The petformance of the core in the Paralab system is measured by the number of
floating point operations per second (flop9. It should be noted that to estimate the
execution time of the experiment, it is assumed that all the computer instructions
conespond to the same floating point operation.

The time of data transmission among the processors determines the communicqtion
overhead of the panllel algorithm execution in a multiprocessor system. The main set
of parameters, which makes possible to estimate the data communication time,
contains the following values:

-latency (a). It is the time, which characterizes the duration of preparing a
message for transmission;

-network bandwidth (/). It is defined as the maximum amount of data, which
can be transmitted in a certain unit of time through a data communication channel.

Among the data communication methods, implemented in Paralab, there are the
following two well-known communication methods [3]. The first method is aimed at
passing messuges as indivisible information blocks (store-and-forwerd routing or
SFR). The second communication method (cut-through routing or C?R),is based on
representing the transmitl€d messages as r set of information blocks of smaller sizes

Qnckets).

2.2 Selecting the Problem and the Parallel Methotl i]

The following widely used parallel algorithms applied to solving complicated
computational problems in various scientific and technical applications are
implemented in the system Paral-ab: the algorithms for data sorting, the algorithms
for matrix operations, the algorithms for solving the systems of linear equations.
graph processing, the algorithms for solving differential equations in partial
derivatives and the algorithms for global multiextremal optimization.

As a rule, fbr every task there are several parallel solving methods implemented.
For the matrix-vector multiplication task we implemented algorithms based on block,
rowwise and columnwise matdx decomposition. For the matrix multiplication
problem there are parallel Fox's and Cannon's algorithms and the algorithm based on
stdped matrix decomposition. For the problem of solving the system of linear
equations we present the parallel variants of Gauss method and conjugate gradient
method. For the sorting problem we implemented parallel variants of bubble sort,
Shell sort and quick sort. For the graph processing task th.ere are parallel algorithm for
building minimal spanning tree, Dijkstra's and Floyd's algorithms for shortest paths
problem. For the probleni of solving the differential equation in partial derivatives we
have parallel Gauss-Seidel algorithm. Parallel index method is implemented for the
problem of multiextremal optimization.

The main problem parameter in Paralab is the amount of the initial data. User can
set additional parameters for some types of problems. For example therc is a
possibility to choose the boundary conditions for the problem of solving the
differential equation in partial dedvatives, to choose the type of function for the
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problem of multiexkemal optimization, to create a graph with the help of builfin
graph editor for the graph processing problem.

2.3 Carrying Out the Computational Experiment

Paralab provides various forms of graphical demonstration of pamllel computation results
in order to -observe the process of carrying out a computational experiment of solving
complicated time consuming computational problems. Before thJ para el algorithri
executlon user can set the visualization pammeters for demonstration speed, ihe mode of
communication operation visualization, the required level ofdetails to b; shown.

g- kk_Er
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Fig, 2. The window of the computational experimenr while solving the problem of matrix_
vector muldplication

. 
The system Paralab provides different schemes of carrying out experiments to

give convenient possibilities for studying parallel algorithms oisolving complicated
computational problems. Problems may be solved in the sequential execution mode,
in the time sharing mode with the possibility to simultaneously observe the algorithm
iterations in all. 

_the computarional experiment windows. Carrying out senes
expenments, whlch requires long-continued computations, may Lake place in the
automatic mode, Experiments may be also carried out in the step-by_step moqe.

2.4 Accumulating and Analyzing the Experiment Results

To accumulate the results of the executed experiments, paral,ab provides a special
memory, which is hereinafter referred to as th€ experiment /og. Thi results are itored
in the experiment log automatically. Accumulated results can be used for observins
and analyzing.

For the experiments saved in the expedment log, we build the graph that shows
how the execution time and the speedup depend on problem anl computational
system parameters. These graphs are built in accordance with the theoretical moders
we use to estimate the execution time of the parallel algorithm,

-----t
--1
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Fig. 3. The experirnent lolr window

3 Modeling Parallel Computations

3.1 Model for the Local Computations

While creating a model to estimate the time of local comtxtations we assume that this
time is the sum of the calculation time and the memory a?cess time:

' r _ ' r -
t | 

- I ,,,!, a I ,,.,, , 0)

Here the calculation time is the result of multiplication of the executed operations
rlumber_N.by the time of one operation execution r. The memory access time is the
rrsult of division of the maximum amount of data M by the memory bandwidth /. To
make the estimation more precise we shoulcl consider that the data comes trom
memory not in byte-by-byte mode but in full cache lines, the length of one cache line
is equal to L bytes. The worst case is when every data element siould oe downloaded
from the memory and it falls in the separate cache line. We should also consider the
RAM latency a that can significantly influence the time of computations. Thus, the
model for the local computations execution time can be the following:

T t =  N  . r +  M  . ( a +  r t  p )  e )
This model doesn't reflect the modern processor architectire, where the processor has
small but fast local memory, which is called cache memory. In order to get the fast
access to the necessary data this data is downloaded from RAM to cache before the
computations with the use of different prediction algodthms. This download can be
performed simultaneously with computations ancl doesn't affect the time of
computation execution. The situation when the necessary data is not in the cache and
the processor should wait for them to be downloaded from RAM is cared cache miss.
To make the model of computational dme more precise we need to know the number
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of cache misses appeared during computations. With this new informatlon we can
correct the time that the processor spends on waiting for the data to be downloaded
from the RAM:

' r  - ^ l  ^  |r t - , , . 1 - y M ( L / B + d )  ( 3 )

where / is the cache miss ratio (number of cache misses divided by the number of
cache access operations), which can be theoletically estimated.

To rnake a decision about the model accuracy tlte computational experiments were
carried out ot the computer with the Intel core 2 quad e6600 processor. The
architecture of this processor includes firsllevel caches with the bandwidth of 153
Gb/sec and latency of 1,22 nsec. The RAM of the rarget system has a bandwidth of
12,4 Gb/sec and latency of 8,31-80 nsec. The alsorithm of matrix-vector
multiplication was executed. The codc for this algorithm is-the following:

f o r  ( i = 0 ;  i < S i z e ;  i + + )  {
P R e s u l t  I i ]  =  0 ;
f o r  ( j  = 0 ;  j < S i z e ;  j + + )

p R e s u l t l i J  + =  p M a t r i x l i * S i z e + j l  * p v e c t o r l j l  ;
]

To calculate the time of one operation execution r we measured the tlme sDent on
performing the algorithm for small object size, when matrix and vectors can fit in
cache Ll. We djvide this time by the number of performed operations and get the
l||ne ol one opeialion execution r = 3,78 nsec.

Table 1. Comparison of the experimental and theoretical execution time of the matrix_vector
multiplicalion algorithm

In cuffent version of Paralab the simplier model for estimating the time of local
computation is realized. This model only uses the number of operations and the time
of one operation execution r. We plan to implement the described approach to local
computations tinre estimation in the next version of paralab.

3.2 Model for Data Passing Operations Execution

The time necessary for transmitting data between the processors defines rre
comnunication overhead of the parallel algorithm execution in a multiprocessor
system. The basic set of parameters, which can help to evaluate the data transmission
time, consists of the following values:

__,,1,|

Matrix Size Experimental Time TheoreticalTime Relativc Enor
2000 0.0103 0,0304 0.002r
4000 o, t222 o , t 2 t 7 0,0036
6000 0,27 48 0,2140 0,0029
8000 0,4894 0,48'72 0,0044
t0000 0,763'l o;76t1 0,0034
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. initializing time (a) charactedzes the duration of preparing the message for
tmnsmission, the search of the route in the network etc.:

. control data transmission time (/,.) between two neighboring processors
(i.e. the processors, connected by a physical data transmission channel); to control
data we may ret'er the message header, the error detection data block etc.,

. transmission time of one data byte along a data transmission channel
(1/P), the duration of this transmission is defined by the communication channel
bandwidth.

Let's consider store-and-forward routing (S.FR). In case of this approach the
processor, which contains a message for transmission, gets all the amount of data
ready for transmission, defines the processor, which should receive the data, and
initializes the operation of data transmission. The processor, to which the message has
been sent, first receives all the transmined data and only then begins to send the
received message further along the route. The time of daia transmission t,,,,,,,, for the
method of transmitting the message of n bytes along the route of length I is defined
by the expression:

. t,,,,,,,, = d+V,++Y (4)

If the messages are long enough, the control data transmission time may be neglected,
and the expression for data transmission time may be written in a simplified way:

t,,,,,,,,=d+frI i\ (5)

Let's consider cut-through routittg (CTR), when the receiving processor may
send the data further along the route immediately atier receiving the cuuent packet
without waiting for the termination of the whole message data transmission. The data
transmission time in case of packet communication method wil l be defined by the
following expression:

t , . , ,^=a+++t" t  6)
IJ

If we compare the obtained expressions, it is possible to notice that in the majority of
cases the packet communication leads to faster data transmission. Besides, this
approach decreases the need for memory for storing the transmitted data

3.3 The Data Passing Operations in Multiprocessoi and Multicore Architectures

As it was previously mentioned, in Paralab the computational system consists of
computational nodes, the network links between them arc determined by the topology
(farm, ring, etc.). Every node has one or more processors, every processor consists of
one or more cores. We assume that the internal links between cores (busses) in frame
of one node form the full graph topology.

:-'
in,
{ * :
ii',
l.':
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To make the time estimation model easier we assume that the comDutations and
data passing operations cannot overlap, which means that the computati;ns stop when
the cores are performing the data transmission, and vice versa.

Every eollective data passing operation between cores can be divided into 3 stages:

1. Data transmission between cores in frames of one computational node and
serrding the data i to thc external network (via network adaptcrs).

2. Data transmission between different computational nodes through the local
network,

3. Receiving the data from the network adapter by the different cores ln lrames
of one computational node.

To calculate the final time of the communication operation we only take into accouni
the time of the second stage (passing the data rhrough local network). The time sDent
on transmitting the data through the bus is 3 to 4 degrees less than that.

3.4 An Example of Computational Experiment Time Estimation

Let's consider the conplexity of the parallel algorithm for matrix_vector
multiplication based on rowwise matrix decomposition. Every core performs the
multiplicatiori of the matiix stripe by the vector, each stripe has n/p rows, where n is
the size of the matdx and p is numbcr of cores. One scalar ptoduct of the matrix row
and a vector involves n, multiplications and (,1-1) additions. L€t's assume that the
multiplication agd addition have the same duration r. Besides, let us assume that the
computer system is hotnogeneous, i.e. all the processors of the system have the same

. performance. With regard to the introduced assumptions, the computation time of the
parallel algorithrn is:

To(ca lc )  =  [n /p l .  (zn  -  1 ) . r  e l

The 'all gather' operation is used to put the result vector on all the Drocesses of the
parallel prcgram. This operation can be performed in ltog2pl iterarions. At the first
iteration the interacting pairs of processors exchange messages of size wln/p] byte
(w is the size of one clement of the vector in bytes). At tlte second iteration the size
becomes doubled and is equal to 2wfn/pl etc. As a result, the all gather operation
execution time when the Hockney [2] model is used can be represented as:

I l o g . p l  t n t  '  .
I  z "w tn / r ] y  w l ' : l ( 2 tbs .e t  -  1 )

ro(comm)= 
i  ( ' . - i - )=  c t l tos2pl  

f f  
(8)

where a is the latency of data communication network, f is the network bandwidth.
Thus, the total time of parallel algorithm execution is

/n \  /n \, r = \ i  ( 2 n - t ) . t + q . t o s z p + w . \ : ) . ( o _ r ) / g  ( e )

(to simpfify the expression (8) it was assumed that rhe values nlp and. logrp are
whole numbers).

Let us analyze the rcsults of the computational experiments carried out in order to
estimate the efficiency of the discussed para el algorithm. The obtained results will
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be used for the comparison of the theoretical estimations and experimental values ofthe computation time. The expedments were carried out on the computational clusteron the basis of the processors Inter xEoN 4 EM64T, :ooo rrarrz'ano the network
Gigabit Ethernet under OS Microsofi Wiadows Server 2003 Stand;;d x64 Edition.The value of r was equal to 1,93 nsec. The value of latency a ana UanOwiatl ,4 areconespondingly 47 msec and 53.29 

.Mbyte/sec. All the comiutations were pertbrmed
over the numerical values of the double type, i.e. the value u,,is equat to g bytes.

The comparison of the experiment execution time fi and the theoreticai time ecalculated in accordance with the expression (9) is shown in Table 2.

Table.2. The comparison of the experimental and theoretical execution rime lbr parallelalgorithm of matrix-vector multiplication based on rowwise matri* a"aornporittrl

Mrtrix Size 2 processors 4 processofs 8 processors
T" TD TD

I000 0,0069 0,0021 0,0r08 0,0017 0.0r52 0,0t752000 0,0132 0,0084 0,014 0,004? 0,0169 0,00323000 0,0235 0,0r85 0,0r93 0,009? 0,0196 0,00594000 0,0379 0.0381 0,0265 0,0188 0,0233 0,02445000 0,0565 o,o5'74 0,0359 0,0314 0,028 0,015

4 Conclusion

The Parallel Laboratory sofrware system (paralab) provides the possibiliry of
:, j i11:"1":"i lsurarionrl.experimenrs for studying and investigating the para eturgonrnms of solvrng complicrted computational problems. The system may be usedlor organizing a set of raboratory works on various courses in the area of paralerprogramming. This raboratory works will alow the rearners to do the fo owing:

c 
. To moder murtiprocessor systeras with various data communicahon networktopologies,

. To obtain the visual presentations of the compurational processes and datacommunication operations which take place in case of paraliel solving variousproblems,
t To construct the effcientlt estintatiozs of the pararel methods to be studied.

In e3.n9ru1, Paralab is the integrated.environment for studying and investigating theparallel algorithms of solving complicated computationat'pr;bt"In" 
-a 

*iO" ,", ofavailable means to visualize the process of canyi;! ou, un 
"*pJ^"n,-ond 

to analyzethe obtained results allows to study the parall-el method' effi"len"y on uu.iouscomputer systems, to make conclusions concerning the scalability of the algorithmsand to determine the possible parallel compumtion s;eedup

. 
The processes of study and research realized Uy earalaU are aimed at masteringth€ 
.fundamentals of parallel computation theory. They ulfo* ,f," i"un.r, to tbrm thebasrc concepts of tbe models and 

-methods of parallel computatrons throughobservation, comparison and analysis of various visuai g.apl,i" fo.;s de*onstrated inthe course of the experiment execution.

S,t'i ,.
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For those who only start to study the problem of parallel computations, Paralab is
very useful, as it allows them to master the parallel programming methods.
Experienced users may use the system in order to estimate the efficiency of new
parallel algorilhms, which are being developed.
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